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« With four [hyper-]parameters I can fit an elephant,
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John von Neumann [1]





Constrained deep networks for medical image segmentation

Hoel Kervadec

Abstract

Weakly supervised image segmentation, in the form of partially labeled images, is attracting sig-
nificant research attention as it can mitigate the need for laborious pixel annotations required by
deep learning models. Enforcing high-order, global inequality constraints on the network outputs
can leverage unlabeled data by guiding the trainingwith prior knowledge, restricting the search space
during training to anatomically feasible solutions. A range of possible values (such as a lower/upper
bounds on the size of a organ) can be very valuable to guide training. However, in the context
of deep neural networks, standard Lagrangian optimization has been largely avoided, mainly due
to the instability and computational complexity ensuing from alternating explicit dual updates and
stochastic optimization. Interior point methods, despite their popularity in convex optimization,
are not applicable neither, as they require a feasible starting point, which is itself a difficult con-
strained problem for deep neural networks. In this thesis, we investigate hard inequality constraints
in the context of deep networks with both quadratic penalties and more principled log-barrier ex-
tensions. We also investigate methods to mitigate class-imbalance in segmentation problems, such
as in brain lesions dataset, by constraining the boundary of the predicted segmentation to match
the ground-truth boundary. This thesis produced five different publications as first author, and four
papers as co-author. Our papers received several awards, and we were invited to publish extended
versions of our works in two special issues of Medical Image Analysis (MedIA).

In our first contribution, we propose to introduce a differentiable penalty, which enforces in-
equality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and
proposal generation. From constrained-optimization perspective, our simple penalty-based approach
is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly, it
yields substantially better results than Lagrangian-based constrained convolutional neural networks,
while reducing the computational demand for training. By annotating only a small fraction of the
pixels, our approach reaches performances comparable to full supervision, on three separate tasks.
While our experiments focused on basic linear constraints such as the target-region size and image
tags, our framework can be easily extended to other non-linear constraints, e.g., invariant shape
moments and other region statistics.

In our second contribution, we propose log-barrier extensions, which approximate Lagrangian op-
timization of constrained-CNN problems with a sequence of unconstrained losses. Unlike standard
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interior-point and log-barrier methods, our formulation does not need an initial feasible solution.
We report comprehensive weakly supervised segmentation experiments, with various constraints,
showing that our formulation outperforms substantially the existing constrained-CNN methods,
both in terms of accuracy, constraint satisfaction and training stability.

In our third contribution, we enforce constraints on the boundary of predicted segmentation.
Widely used loss functions for CNN segmentation, such as Dice or cross-entropy, are based on in-
tegrals over the segmentation regions. Unfortunately, for highly unbalanced segmentations, such
regional summations have values that differ by several orders of magnitude across classes, which
affects training performance and stability. We propose a boundary loss, which takes the form of a
distance metric on the space of contours, not regions. This can mitigate the difficulties of highly
unbalanced problems because it uses integrals over the interface between regions instead of unbal-
anced integrals over the regions. Furthermore, a boundary loss complements regional information.
Inspired by graph-based optimization techniques for computing active-contour flows, we express a
non-symmetric L2 distance on the space of contours as a regional integral, which avoids completely
local differential computations involving contour points. This yields a boundary loss expressed
with the regional softmax probability outputs of the network, which can be easily combined with
standard regional losses and implemented with any existing deep network architecture for N-D seg-
mentation. We report comprehensive evaluations on different unbalanced problems, showing that
our boundary loss can yield significant increases in performances while improving training stability.

In a fourth contribution, we investigates a curriculum-style strategy for semi-supervised CNN
segmentation, which devises a regression network to learn image-level information such as the size
of the target region. These regressions are used to effectively regularize the segmentation network,
constraining the softmax predictions of the unlabeled images to match the inferred label distribu-
tions. Our framework is based on inequality constraints, which tolerate uncertainties in the inferred
knowledge, e.g., regressed region size. It can be used for a large variety of region attributes. We
evaluated our approach for left ventricle segmentation in magnetic resonance images (MRI), and
compared it to standard proposal-based semi-supervision strategies. Our method achieves competi-
tive results, leveraging unlabeled data in a more efficient manner and approaching full-supervision
performance.

In our fifth and last contribution, we propose a novel weakly supervised framework based on
several global constraints derived from box annotations. Particularly, we leverage a classical tight-
ness prior to a deep learning setting via imposing a set of constraints on the network outputs. Such a
powerful topological prior prevents solutions from excessive shrinking by enforcing any horizontal
or vertical line within the bounding box to contain, at least, one pixel of the target region. Further-
more, we integrate our deep tightness prior with a global background emptiness constraint, guiding
training with information outside the bounding box. We demonstrate experimentally that such
a global constraint is much more powerful than standard cross-entropy for the background class.
The ensuing optimization problem is challenging as it takes the form of a large set of inequality
constraints on the network outputs. We solve it with a sequence of unconstrained losses based on
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our log-barrier extensions. This accommodates standard stochastic gradient descent, while avoiding
computationally expensive and unstable Lagrangian dual steps and projections. Extensive experi-
ments over two different public data sets and applications (prostate and brain lesions) demonstrate
that the synergy between our global tightness and emptiness priors yield competitive performances,
approaching full-supervision performances.

All the codes ensuing from this thesis are publicly available, and free to reuse and modify. The
functional programming style used makes it easy to integrate new loss functions and constraints,
with little-to-no additional coding efforts.

Keywords: Constrained optimization, Deep learning, Medical imaging, weak supervision.
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Introduction

C
omputer vision (CV) is an interdisciplinary field that aims to enable computers to
“see”, not simply retrieving and encoding the signal of a photographic sensor (CMOS),
but rather processing and interpreting automatically its content. In other words, com-
puter vision attempts to get a higher-level understanding of the image, and to mimic the

capabilities of the human visual system. This branch of artificial intelligence 1 has many real-world
applications, such as video-surveillance, autonomous driving, healthcare, industrial processes, image
search and retrieval, and so on. While there might be significant overlap, computer vision does not
necessarily imply or involve machine learning, although most of the recent literature also belongs
to that second category.

Due to the recent advances in deep learning, the past few years have witnessed an unprecedented
progress in the performances of computer vision systems, while lowering the barrier of entry for
new practitioners. Neural networks are not new [7], but their surge in popularity and performance
improvements have been enabled by other factors:

• Available computing power, often in the form of Graphical Processing Units (GPUs), reached
a tipping point enabling larger and more complex models to be trained in a reduced amount
of time.

• The multiplication of large public annotated datasets (e.g. ImageNet [8], PascalVOC [9]),
have facilitated (pre-)training of deep models. Availability of these public benchmarks also
allows a fair comparison between methods.

If we focus on recognition, there exist three main tasks (from easier to more difficult): image
classification, object detection and semantic segmentation—all of them illustrated in Figure 1.

• Image classification (Fig. 1a). It consists of predicting a label, or a class, for the whole image: is
it a cat, a dog, a boat? Is there a tumor in this medical image, or not? The label can be a simple
binary choice (yes/no question), or take a discrete value (from a set of possible values). When
several objects of interest are present in the same image (a cat next to a dog, for instance), it
becomes difficult to assign a single label to the whole image.

• Object detection (Fig. 1b). It goes beyond image classification by locating roughly (in the form
of a bounding box) the object. This enables the prediction of multiple (overlapping) bounding
boxes per image, each one with an independent class.

1It was thought in 1966 that it could be done in a single summer project [6].
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• Semantic segmentation (Fig. 1c). It generalizes object detection, being more fine grained, with
the goal of locating the object exactly—it amounts to pixel-wise classification. This gives a
complete delineation of each object, as well as exact shape and size attributes, which may play
a crucial role to precisely interpret the image content. This is the application we focus on
in this PhD dissertation.

(a) Classification (b) Object detection (c) Image segmentation

Figure 1: Illustration of the difference between different tasks.

For image semantic segmentation, decades of research have produced a wealth of methods to
tackle this challenging task in multiple scenarios, including image pre-processing, thresholding,
graphical models [10], active shape models [11], level-sets [12] or atlases methods [13, 14]. Al-
though efficient in some specific settings, those classical approaches might be imprecise and/or too
slow when dealing with more general and difficult tasks. As in many other fields, deep learning
has in the past few years pushed performances to new heights2. Fully Convolutional Networks
(FCNs) are at the core of every state-of-the-art method, relying on now standard architectures such
as [15, 16, 17]. Despite some astonishing results of deep learning methods, their main bottleneck
remains the need for huge datasets of labeled data—series of examples, with the corresponding inputs
and correct answers. Those examples have to be produced and assembled by humans, and the time
needed to do so varies between tasks: from a few seconds to annotate an image for classification to
several minutes for segmentation [18]. More complex scenes, such as high-resolution street views,
may take more than one hour to annotate, while annotating a 3D medical scan may take several
hours or days. Once a dataset of labeled data is assembled (often referred to as the training set), the
model parameters are tuned automatically until its predictions match the examples as closely as pos-
sible. A change in the training set (be it addition, omission, label noise, or shuffling) will produce a
different model, which in turn will have different predictions once put into production.

2Natural language processing also had its deep learning revolution, and humans were finally beaten in the game of Go,
to a large extent due to deep learning methods.
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https://xkcd.com/1838/

Medical imaging is the field that seeks to produce images of the human body and make it available
to the clinical setting. For the most part of history, medicine has been limited by the (in)ability
to see inside the human body, which makes harder to diagnose, understand, and treat disease and
injuries. A major breakthrough came in the late 19th century, with the discovery of the X-rays
and their medical applications by Wilhelm Röntgen—for which he was awarded the first Nobel
prize of Physics. Noticing that different parts of the human body absorbed (or did not) different
waves-lengths of radiations, it allowed to take a picture of the inside, as showed by Figure 2.

(a) Hand mit Ringen. (b) Frontal view of a knee.

Figure 2: Comparison of the first X-ray taken by Wilhem Röntgen depicting his wife’s hand, and a
modern X-ray.

https://xkcd.com/1838/


xxvi | Introduction

With decades of refinements and cutting-edge research, contemporary imaging methods include:

• Computer tomography (CT). A rotating X-Ray machine performs a series of 2D scans at differ-
ent angles, followed by reconstructing a 3D model of the body. Because of the higher dose of
radiation the patient receives, there is safety limits on the frequencies that can be performed.
Naturally, CT-scans can image the same objects as X-rays scans—organs with a high-water
content, such as the brain, remains virtually invisible with it—limiting its applications.

• Magnetic Resonance Imaging (MRI). The basic concept is that a powerful magnetic field will
excite, with pulses at the correct resonating frequency, nucleis of specific molecules3 (most
of the time, the H nuclei of the H2O molecules). By measuring the change of response, and
the time it takes for the molecules to relax, one is able to deduce the composition of the
scanned area. By changing the targeted molecules, measuring a different signal, or using a
contrastive agent, one is able to measure different features/modalities. As illustrated in Fig.
3c and 3d, different modalities (such as T1 and Flair) react differently to white and gray
matter. Performing a scan remains long, and 3D images (made by stitching a series of 2D
scans) are very sensitive to motion, especially at higher resolutions. Considerable research
efforts continue to improve speed, precision and patient comfort.

• Ultrasounds. As sound waves are (partly) reflected at the accoustic boundary between tissues
(e.g., between different organs), it is possible to emit soundwaves and thenmeasure the round-
trip time of the reflected waves, making it possible to deduce the tissue layouts4. This very
portable and real-time imaging method remains noisy, and it is difficult to get sharp images
with it.

(a) Ultrasound (b) CT scan (c) MRI (T1 modality) (d) MRI (Flair modality)

Figure 3: Illustration of different modern imaging methods.

Selecting the best suitedmodality will depend on several factors: the information required by the
doctors, portability (some patients have limitations to be moved to the room containing the scan),
cost and availability of the machines. Safety can also come into play, due to radiation exposure or
the presence of non-removable metallic implants.

3As Arthur C. Clarke famously stated, «Any sufficiently advanced technology is indistinguishable from magic ».
4What is interesting is the scalability of this method, as one can perform the same to image the center of the Earth.
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Notice that, contrary to natural images, medical imaging methods work in an indirect and reac-
tive way. A CMOS sensor will “simply" measure the light-waves emitted and reflected by the object
of interest. On the contrary, the methods we previously described first emit waves or particules
toward the body and, from the response, deduce an image.

When computer vision meets medical imaging

Nowadays, radiologists spend a considerable amount of their time looking at and annotating med-
ical images (often 3D volumes). Not only time consuming—reducing the experts availability for
patients care or clinical research—those repetitive tasks can be error-prone. Automating parts of
their workflow could facilitate their work, and ultimately improve patients’ outcome.

Semantic image segmentation, as introduced earlier, is of crucial importance in the medical set-
ting, as it serves the diagnosis, treatment and follow-up of many diseases. For instance, the segmen-
tation of the left-ventricle in a Cine-MRI (MRI scan over time) can be used to compute the ventricle
volume over time, helping to diagnos cardiac arythmia. In oncology, it can help target areas to radi-
ate and organs to spare during radiotherapy. A complete segmentation of a scan can help to design
custom-made implants. Moreover, an automatic segmentation is easier to interpret/understand and
useful for quality control. Those applications and advantages explain the considerable attention that
image segmentation receives in the research community, which translates in numerous publications
in conferences in the field (Figure 4).

Figure 4: Word cloud of the paper titles from the Medical Imaging with Deep Learning (Midl) 2020
conference.
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This PhD will focus on two major difficulties of image segmentation: annotations cost and data
imbalance. While natural image segmentation is similarly affected, those difficulties are much more
pronounced in the medical field.

Annotations are expensive to make As mentioned earlier, training a deep learning model re-
quires to assemble a curated and annotated set of data; this is often the most expensive step of a
machine learning pipeline and its main bottleneck. For natural images, annotations can be crowd-
sourced, with tools such as ReCaptcha (Fig 5), Amazon Mechanical Turk, or other forms of cheap
labor. In the medical field, annotations require high expertise, restricting greatly the pool of capable
annotators. As most of the time medical images are 3D volumes, they take even longer to annotate.
Proper tooling might help, but the expert might still be required to go manually through all 2D
slices. As such, for some tasks, it may take up to one week to annotate a single image (Figure 6).
Additionally, the difficulty is further accrued by the diversity in acquisition settings (manufacturer
of the MRI, and its settings), which directly affects generalization performances: subtle differences
between settings might make a network trained on setting A unable to predict correctly on setting
B. A good dataset must, therefore, cover not only many patients but also several sites, vendors and
settings—which adds administrative and regulatory hurdles, as the sharing of medical data is strictly
regulated.

(a) Simple task that anynone can do (b) Non realistic

Figure 5: The second case is not realistic to ask to regular hoomans.

Data imbalance Data imbalance refers to big discrepancy in distribution between classes of a
dataset, with one class several orders of magnitude more frequent than another. In medical semantic
segmentation, it often happens on brain lesions dataset (but not limited to), where most of the brain
is healthy, as showed in Figure 7. If training methods are not modified to mitigate this imbalance,
the resulting predictions will over-predict the majority class and completely skip the rest—when the
minority class (the lesions) is the most important one to detect.
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Figure 6: Annotating such a scan can take up to one week for a medical doctor.

Figure 7: Example of a very imbalanced dataset, the White Matter Hyperintensities (WMH)
MICCAI 2017 challenge. Brain lesions make up for only 0.05% of the total number voxels, with
many slices without any lesion.

Motivations and objectives

While in the natural world, for instance, it is easy to know a car size and shape in great details from
its blueprints—which could guide a segmentation algorithm—it is difficult to use that information
in practice. The variety of points of view (orientation, distance) and potential occlusion creates
a lot of variance in the way the object appears in a 2D image. In medical imaging, acquisition
parameters are controlled and consistent across scans: the point of view, distance and orientation of
the patient are all available information—making it easier to translate textbook knowledge about an
organ (approximate size, shape, location, ...) to a 3D scan. The motivation to use prior knowledge
directly into the training is strong: Why re-learn (through expensive, annotated data) our expensive
text-book? Radiological text reports, another existing source of prior information, could also be
used. Managing to embed those priors at training would reduce the required amount of newly
annotated data, although it is not clear how to achieve it in the context of deep learning.

Our approach was to formulate the training of a deep network with priors as a constrained opti-
mization problem: the usual error minimization between labels and predictions remains unchanged,
but inequality constraints restrict the search space to only anatomically feasible solutions. While
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elegant theoretically, it is actually very difficult to solve constrained optimization problems when
dealing with deep neural networks. As we will show in Chapter 1, despite the extensive literature
on how to handle constraints in classical convex optimization, deep learning brings new difficulties
that are not easily manageable, for computational and memory reasons5. Novel methods need to be
developed with deep learning in mind to be able to effectively use our prior information.

We can regroup the contributions of this dissertation in two parts, each composed of several
articles published in different conferences and journals. While they can be read independently, their
research and development was intertwined: interesting constraints (such as the ones in Chapter 6)
became apparent only once previous works proved that inequality constraints were a useful and
effective way to embed prior information. Conversely, such complex constraints were needed to
benchmark and push different optimization methods to their limits (as in Chapter 3).

Thesis outline

Background We start with a dedicated chapter to introduce useful notions for the understanding
of this thesis and its context. Optimization basics and notations are layed down, with an emphasis
on constrained optimization and standard Lagrangian dual methods. We connect this optimization
framework to deep learning and standard stochastic gradient descent, highlighting the optimization
difficulties of deep learning and explaining the lack of theoretical guarantees on convergence and
optimality. While we do not cover neural network architectures in great details, we will introduce
some standard training losses and discuss their effects. A connection to classical Random Fields
methods—and how they can be used as post-processing in the deep learning era—is made. We then
present the most common forms of weak labels and supervision. More specifically, we describe the
major differences between proposal based methods (which attempt to mimic full supervision) and
direct-lossmethods (which embrace the weak nature of the labels). We argue that direct losses, while
more difficult to formulate and adapt, are more suited for weak labels. At last, we discuss the few
related methods for constrained optimization in the context of deep neural networks.

First part: Constraining deep neural networks

Constrained-CNN Losses for Weakly Supervised Segmentation H. Kervadec, J. Dolz, M Tang,
E. Granger, Y Boykov, I. Ben Ayed. Midl 2018 (Selected for oral presentation), journal extension in
MedIA, volume 54, 2019.

Weakly-supervised learning based on partially labelled images or image-tags is currently attract-
ing significant attention in CNN segmentation, as it can mitigate the need for full and laborious
pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network out-
put (for instance, to constrain the size of the target region) can leverage unlabeled data, guiding the
training process with domain-specific knowledge. Inequality constraints are very flexible because

5As for several areas, it would not be an issue had we infinite time to train our networks.
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they do not assume exact prior knowledge. We propose to introduce a differentiable penalty, which
enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iter-
ates and proposal generation. From constrained-optimization perspective, our simple penalty-based
approach is not optimal as there is no guarantee that the constraints are satisfied. However, surpris-
ingly, it yields substantially better results than the Lagrangian-based constrained CNNs in [3], while
reducing the computational demand for training. By annotating only a small fraction of the pixels,
the proposed approach can reach performances comparable to full supervision, on three separate
tasks. While our experiments focused on basic linear constraints such as the target-region size and
image tags, our framework can be easily extended to other non-linear constraints, e.g., invariant
shape moments [19] or other region statistics [20].

Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions H. Ker-
vadec, J. Dolz, J. Yuan, C. Desrosiers, E. Granger, I. Ben Ayed. Pre-print.

This study investigates the optimization aspects of imposing hard inequality constraints on the
outputs of CNNs. In the context of deep networks, constraints are commonly handled with penal-
ties for their simplicity, despite their well-known limitations. Lagrangian-dual optimization has
been largely avoided, except for a few recent works, mainly due to the computational complexity
and stability/convergence issues caused by alternating explicit dual updates/projections and stochas-
tic optimization. Several studies showed that, surprisingly for deep CNNs, the theoretical and
practical advantages of Lagrangian optimization over penalties do not materialize in practice. We
propose a log-barrier extensions, which approximate Lagrangian optimization of constrained-CNN
problems with a sequence of unconstrained losses. Unlike standard interior-point and log-barrier
methods, our formulation does not need an initial feasible solution. We report comprehensive
weakly supervised segmentation experiments, with various constraints, showing that our formula-
tion outperforms substantially the existing constrained-CNN methods, both in terms of accuracy,
constraint satisfaction and training stability.

Boundary loss for highly unbalanced segmentation H. Kervadec, J. Bouchtiba, C. Desrosiers, E.
Granger, J. Dolz, I. Ben Ayed. Midl 2019 (Runner-up for best-paper award), journal extension in
MedIA, volume 67, 2020.

Widely used loss functions for CNN segmentation, such as Dice or cross-entropy, are based on
integrals over the segmentation regions. Unfortunately, for highly unbalanced segmentations, such
regional summations have values that differ by several orders of magnitude across classes, which
affects training performance and stability. We propose a boundary loss, which takes the form of a
distance metric on the space of contours, not regions. This can mitigate the difficulties of highly
unbalanced problems because it uses integrals over the interface between regions instead of unbal-
anced integrals over the regions. Furthermore, a boundary loss complements regional information.
Inspired by graph-based optimization techniques for computing active-contour flows, we express a
non-symmetric L2 distance on the space of contours as a regional integral, which avoids completely
local differential computations involving contour points. This yields a boundary loss expressed with
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the regional softmax probability outputs of the network, which can be easily combined with stan-
dard regional losses and implemented with any existing deep network architecture for N-D segmen-
tation. We report comprehensive evaluations and comparisons on different unbalanced problems,
showing that our boundary loss can yield significant increases in performances while improving
training stability.

Second part: Constraints for medical image segmentation

Curriculum semi-supervised segmentation H. Kervadec, J. Dolz, E. Granger, I. Ben Ayed. Miccai

2019.

This study investigates a curriculum-style strategy for semi-supervisedCNN segmentation, which
devises a regression network to learn image-level information such as the size of the target region.
These regressions are used to effectively regularize the segmentation network, constraining the soft-
max predictions of the unlabeled images to match the inferred label distributions. Our framework
is based on inequality constraints, which tolerate uncertainties in the inferred knowledge, e.g., re-
gressed region size. It can be used for a large variety of region attributes. We evaluated our approach
for left ventricle segmentation in magnetic resonance images (MRI), and compared it to standard
proposal-based semi-supervision strategies. Our method achieves competitive results, leveraging
unlabeled data in a more efficient manner and approaching full-supervision performance.

Bounding boxes for weakly supervised segmentation: Global constraints get close to full su-
pervision H. Kervadec, J. Dolz, S. Wang, E. Granger, I. Ben Ayed. Midl 2020 (Selected for oral
presentation).

We propose a novel weakly supervised learning segmentation based on several global constraints
derived from box annotations. Particularly, we leverage a classical tightness prior to a deep learning
setting via imposing a set of constraints on the network outputs. Such a powerful topological prior
prevents solutions from excessive shrinking by enforcing any horizontal or vertical line within the
bounding box to contain, at least, one pixel of the foreground region. Furthermore, we integrate
our deep tightness prior with a global background emptiness constraint, guiding training with infor-
mation outside the bounding box. We demonstrate experimentally that such a global constraint is
much more powerful than standard cross-entropy for the background class. The resulting optimiza-
tion problem is challenging as it takes the form of a large set of inequality constraints on the outputs
of deep networks. We solve it with a sequence of unconstrained losses based on a recent powerful
extension of the log-barrier method, which is well-known in the context of interior-point methods.
This accommodates standard stochastic gradient descent (SGD) for training deep networks, while
avoiding computationally expensive and unstable Lagrangian dual steps and projections. Extensive
experiments over two different public data sets and applications (prostate and brain lesions) demon-
strate that the synergy between our global tightness and emptiness priors yield very competitive per-
formances, approaching full supervision and outperforming significantly DeepCut. Furthermore,
our approach removes the need for computationally expensive proposal generation.
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Code and open-source

The code of all papers is available, free to reuse/modify. While split in different repositories, all
code stem from the same (private) codebase, that expanded over the years of this PhD.

Constrained-CNN Losses for Weakly Supervised Segmentation
https://github.com/LIVIAETS/SizeLoss_WSS

Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions
https://github.com/LIVIAETS/extended_logbarrier

Boundary loss for highly unbalanced segmentation
https://github.com/LIVIAETS/surface-loss

Curriculum semi-supervised segmentation
https://github.com/LIVIAETS/semi_curriculum

Bounding boxes for weakly supervised segmentation: Global constraints get close to full su-
pervision

https://github.com/LIVIAETS/boxes_tightness_prior
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Chapter 1

Background

1.1 Optimization - Background and notations

1.1.1 Unconstrained optimization

O
ptimization, in very broad terms, consists of finding the ideal value (either a maxi-
mum or minimum) of a function f0 : domf ⊆ RD → R with respect to its input
x 7→ f0(x). It has widespread real-world applications: many decision making or sys-
tem design problems can be formulated as an optimization problem. A minimization

problem is denoted as1:
min

x∈domf
f0(x).

An optimal solution p∗ := f0(x
∗) will verify:

∀y ∈ domf : p∗ ≤ f0(y),

while an ϵ sub-optimal solution x̃ will verify:

f0(x̃) ≤ p∗ + ϵ.

Apart form trivial functions, finding the optimal p∗ (or the corresponding optimal input x∗) is
usually very difficult, and cannot be solved analytically. Trying exhaustively all different x ∈ domf
is not feasible, more sowhen dealingwith continuous domains and/or high dimensions. As finding a
global solution x∗ might not be feasible, one can instead settle for a local approximation x̃: a solution
that is minimal in its own local neighborhood. A very crude approach consists of starting with an
initial guess x0, and then refining it with an existing algorithm—for instance a gradient descent2.
As the gradient ∇f(x) is the slope of the function at that point, a simple method is to follow it: go
up if we maximize f0, go down if we minimize it. The procedure is described in more details in
Algorithm 1. When f0 is convex3 we have the guarantee that x̂ = x∗: a global optimum—see Figure
1.1b. If not (as in Fig. 1.1a), the slope pushes back toward x̂; it is stuck in that local minima and
more complex optimization methods are needed.

1A maximization problem can simply be transformed into a minimization problem by putting a minus sign (−) in
front of f0.

2There is a whole subset of optimization research that focused on gradient-free optimization, but this is both out of
scope, and not applicable to deep neural networks. Here, we assume that f0 is derivable (at least once) over its domain.

3A function is convex when, ∀x, y ∈ domf, α+ β = 1 : f0(αx+ βy) ≤ αf0(x) + βf0(y). In other words, the line
(chord) between f0(x) and f0(y) is always above f0.

1
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Algorithm 1 Overview of the gradient descent algorithm.
Input:
Given step update γ
Given stopping criterion η
Init x0 to some value in domf
Init t← 0

Output:
Current solution x̂ := xt

while η is not met do
∆x← ∇f0(xt)
xt+1 ←= xt − γ∆x
t← t+ 1

end while

Optimization methods for convex problems are quite mature and robust. Convex problems are,
typically, quite straightforward to optimize. However, as highlighted by Boyd [21], optimizing a
non-convex problem is more akin to art than technology; there is no standard method that works
for everything. On the contrary, for convex problems, the art resides in the difficulty to identify or
reformulate the problem as convex. Since there exist muchmore numerically efficient algorithms for
convex problems, a decent strategy for some non-convex problems might be to minimize a convex
upper bound, and then refine locally the convex upper bound.
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Figure 1.1: Depending on the starting point, a gradient descent will find a different local minima
for non-convex functions.

1.1.2 Constrained optimization: Lagrangian and duality

In some situations, we want not only to minimize f0, but also to enforce some conditions on the
solution; those are constraints on the optimization process, which the solution should satisfy. For-
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mally, constraints can be written as follows4:

min
x

f0(x) (1.1)

subject to f1(x) ≤ 0

...

fP (x) ≤ 0.

A basic algorithm for constrained optimization comes from Joseph-Louis Lagrange (1736-1813),
who introduced the Lagrangian-dual problem. A simplistic way to reformulate Equation (1.1) into
a unconstrained optimization problem would be to use a infinite penalty function when the con-
straints are not satisfied:

min
x
f0(x) +

P∑
i=1

∞[fi(x)>0], (1.2)

where∞[a] takes the value 0 when axioms a is False, and the value +∞ when a is True. It will
not come as a surprise that such a discontinuous function is horrible to optimize. But first, we can
notice that:

∀i :∞[fi(x)>0] = max
λ⪰0

λifi(x).

When maximizing over λ � 0 for some fi(x), the optimal solution is 0 when fi(x) < 0. When
fi(x) is positive, the optimal λ value is +∞. We can plug this reformulation back into our poorly
conditioned minimization problem (1.2):

min
x

max
λ⪰0

f0(x) +

P∑
i=1

λifi(x). (1.3)

This problem is still difficult to optimize, but less so if we swap the minimization andmaximization:

max
λ⪰0

min
x

f0(x) +
P∑
i=1

λifi(x). (1.4)

While easier to solve, it does not have the same optimum as the original Eq (1.3) (more on that
shortly). For a fixed λ, we can optimize x, this is the Lagrangian dual function:

L(λ) = min
x
f0(x) +

P∑
i=1

λifi(x). (1.5)

We can easily show thatL(λ) ≤ p∗. Indeed, for a feasible solution x̃, ∀i ∈ {1, ..., P} : λifi(x̃) ≤
0. Therefore,

L(λ) ≤ f0(x̃) +
P∑
i=1

λifi(x̃) ≤ f0(x̃) ≤ f0(x∗) = p∗.

4An equality constraint fn(x) = 0 can be written with two inequality constraints: fn(x) ≤ 0 and fn(x) ≥ 0.
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The non-negative difference p∗ − L(λ) is called the duality gap. By alternating optimization with
respect to λ and x, we decrease the duality gap, and eventually reach a gap of zero—if the Karush-
Kuhn-Tucker (KKT) conditions are met [21]. If so, strong-duality holds and x̂ = x∗. This is generally
not the case, and not always true even for convex settings.

1.2 Deep neural networks

1.2.1 High-level overview

Deep neural networks (and their ancestors the perceptron and multi-layer perceptron) are originally
inspired from a very simplified model of biological neurons. At their core, neural networks are para-
metric functions, performing matrix multiplications between their inputs and their parameters—
theirweights. It is those weights that we want to optimize5. Modern networks are usually regrouped
in layers, which are composed together. To increase expressiveness and ability for the network to
model more complex functions, non-linearity are added on top of the core dot products. As such,
a high-level description6 of a neural network N can be:

N (x;θ) := lp ◦ ... ◦ l0(x), (1.6)

where each li(x) involves different operations and weights. The overall structure of a single layer is
often in the form:

wi, bi := θi

li (x; (wi, bi)) := g(xwi + bi),

where g is a non-linear, derivable function. Some layers might be much simpler, whose purpose is
to reduce the dimensionality of the data (by averaging, max-pooling, or other methods).

In the context of computer vision, the convolution operation—inspired from signal processing,
where the same operation is performed on a subset of the input, in a sliding window fashion—is
at the core of many architectures. Convolutional Neural networks proved to be very effective in
a breadth of difficult computer vision tasks. Defining the network architecture (the final function
composition) is, however, not enough, as the weights θ need to be tuned for the network to perform
well. This cannot be done by hand: the weights are in a very high dimensionional space, and
the network function is quite impervious to mathematical analysis. The current preferred method
consist of first initializing the parameters randomly and then tune them over a training set via a
descent-based optimization scheme.

5We often read in the (scientific) literature that neural networks are trained. This terminology is actually very close
to what Alan Turing describes in his seminal paper [22] on the imitation game, where he discusses the idea of creating an
artificial kid and teaching it to be adult. While being a very interesting read, it remains a though experiment. Using the
word training for an optimization problem might be perceived as anthropomorphism, and not necessarily very scientific.

6For the sake of simplicity here, we do not model skip connections, without any loss of generality.
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LetD = {(xn, Y n)}Nn=1 be a set of (input, label) pairs, where the input is fed to the network
and label is the desired output of the network. A loss function is designed in such a way that it is
minimized when the network predictions match perfectly the labels. This loss is then optimized
with respect to the network parameters θ:

argmin
θ

∑
(xn,Y n)∈D

L(N (xn;θ), yn).

Once "trained" (i.e., when the optimization procedure cannot find a better solution), we can use
those parameters for inference/deployment.

The resulting optimization problem is highly non-convex and very difficult to optimize. Using
a standard gradient descent might work decently in theory, but the resulting optimization problem
is still beyond computing capabilities of modern hardware:

min
θ

∑
(xn,yn)∈D

L(N (xn;θ), Y n).

Performing the updates of Alg. 1 would require to store all the gradients for each data point at the
same time, which would exhaust the memory of most computers. Instead, a slight modification of
the algorithm perform a similar update, but on a different random subset of the dataset (a batch) at
each iteration. This is the Stochastic Gradient Descent (SGD): sub-batches B ⊂ D are sampled, and
we do one update with respect to that batch. The algorithm is succinctly described in Algorithm 2.

For classification tasks, Y take a value among a set of discrete labels K = {1, ...,K}, and the
network is designed in such a way that N (·;θ) ∈ RK . The class predicted by the network is the
index of the output vector with the highest value:

Ŷ n = argmax
k∈K

N (xn;θ)k.

This works at inference. However, during training, the argmax function is not derivable, which
makes it incompatible with gradient descent. Instead of having discrete network outputs, during
training, we use continuous probabilities: the network outputs are vectors in RK and within the
probability simplex (all the values of a simplex vector are between 0 and 1, and sum to 1). It is
easy to obtain a vector of probabilities from the raw network outputs, with the popular softmax
function:

snθ :=
1

Z
eN (xn;θ)k ,

where Z =
∑

k′∈K eN (xn;θ)k
′
is a normalizing constant. The final result snθ : Ω → [0, 1]K is a

vector of continuous probabilities, within the simplex (
∑K

k=1 s
n
θ(k) = 1), but not necessarily on its

vertices. An exact solution will predict a probability of 1 for the class Y , and 0 for all others. The
labels Y can similarly be re-encoded as a K length one-hot vector, such as:

yn(k) =

{
1 if k = Y n

0 otherwise.
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Algorithm 2 Overview of the stochastic gradient descent algorithm.
Input:
Given step update γ
Given batch size B
Given stopping criterion η (convergence, or quality of the result)
Given distribution Π
Given uniform distribution U
Init θ ∼ Π
Init t := 0

Output:
Current solution θ̂ := θt

while η is not met do
Sample B ∼ U(0, N)B

L =
∑

b∈B L(N (xb; θ), Y b)
∆θ = ∇L
θt+1 := θt − γ∆θ
t = t+ 1

end while

While not required explicitly, representing the label in this way will make the operations much
simpler to define. To summarize, yn : Ω → {0, 1}K is the one-hot encoded label, and snθ : Ω →
[0, 1]K is the softmax output of the network, both vectors summing to 1.

1.2.2 Neural networks for image segmentation

Image semantic segmentation is in essence pixel-wise segmentation. Let us first define Ω ⊂ R2,3 the
image spacial domain of our dataset D = {(xn, yn)}Nn=1, xn being the input images and yn their
corresponding one-hot encoded ground truth. For semantic segmentation, the network architecture
is designed in such a way that its output matches the dimension of the inputs:

xn : Ω→ RM

yn : Ω→ {0, 1}K

snθ : Ω→ [0, 1]K ,

whereM represent the number of modalities7 of the input.

This thesis does not focus on networks architectures, and all formulations presented are architecture-
agnostic. For readability reasons, we will simply denote onwards snθ for the softmax predictions,
without referring toN (·;θ) each time. We will describe losses dedicated for semantic segmentation

7Often called channels for natural images—3 in the case of RGB images, 1 for grayscale.
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shortly, in Section 1.2.3. Once trained, the predicted segmentation can be drawn (as in the case of
classification) with the argmax function:

Ŷ n := [Ŷ n(p) ∀p ∈ Ω] (1.7)

Ŷ n(p) := argmax
k∈K

snθ(p, k) (1.8)

1.2.3 Training losses for segmentation

In the previous section, we discussed how the SGD algorithm will minimize a loss. There is several
standard losses used in image segmentation. As all of them are averaged over the current batch b,
for readibility reasons we will denote in this section snθ(p)k as sp,kθ and yn(p)k as yp,k.

Common losses

L2 Loss is one of the simplest choices, where one minimizes the L2 norm between the one-hot
vector encoding the ground-truth and the network-predicted probability vector:

LL2(sθ, y) =
K∑
k=1

∑
p∈Ω
|sp,kθ − y

p,k|2

Cross-entropy loss takes the following form, and could be viewed as the KL divergence between
the label distribution and the predicted distribution:

LCE(sθ, y) = −
∑
k

∑
p∈Ω

yp,k log(sp,kθ )

It reaches its minimum at 0, when yp,k matches sp,kθ

Dice loss is a modification of the the common DSC index, used to measure the overlap between two
segmentations (usually the ground-truth segmentation and the predicted one). The formulation is
relaxed to use the predicted continuous probabilities sθ instead of binary labels:

LDSC(sθ, y) =

K∑
k=1

−
2
∑

p∈Ω s
p,k
θ yp,k∑

p∈Ω s
p,k
θ +

∑
p∈Ω y

p,k
.

As we want to maximize the DSC in a minimization setting, we simply add a minus sign in front
of the formula.

Notice that LL2 and LCE treat semantic segmentation as a purely independent pixel-wise classi-
fication problem—the formulation is exactly the same as in other settings. LDSC is slightly different
in that aspect, as the loss takes into account the predictions over the whole image.
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Losses gradients

As we perform a gradient descent on those losses to train our neural network, it is interesting to
compare the range of values that the gradients (wrt. the softmax probabilities sθ ) can take—as it
can influence the training and behavior in major ways:

∂LL2
∂sp,kθ

= 2(sp,kθ − y
p,k) (1.9)

∂LCE

∂sp,kθ

= −y
p,k

sp,kθ

(1.10)

∂LDSC

∂sp,kθ

= −2(yp,kUk − Ik)

Uk2
, (1.11)

where Ik =
∑

p∈Ω s
p,k
θ yp,k and Uk =

∑
p∈Ω s

p,k
θ +

∑
p∈Ω y

p,k, corresponding to the intersection
and union of the two segmentations, respectively. The gradients for some ground truth and softmax
predictions are plotted in Figure 1.2.

(a) yp,k (b) sp,kθ

(c) ∂LCE

∂sp,kθ

(d) ∂LL2

∂sp,kθ

(e) ∂LDSC

∂sp,kθ

Figure 1.2: Partial derivatives of commons losses wrt. sp,kθ . Notice the variation in the scale of the
gradients in (c), (d), (e). Best viewed in colors at high DPI.

We can easily see that −2 ≤ ∂LL2

∂sp,kθ

≤ 2 and −∞ ≤ ∂LCE

∂sp,kθ

≤ 0. The ranges of values are different

from one loss to the other, and it is interesting to see how each loss will push a probability "down"
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if needed8: LL2 will push it directly down with its positive gradient. On the contrary, LCE will do
it in an indirect way, by pushing up the probabilities for k′ 6= k. One can also notice that, for each
pixel, the gradient depends solely on the pixel, and is not influenced in any manner by its neighbors
or other pixels in the image.

The case of ∂LDSC

∂sp,kθ

is quite different, and we can quickly see that ∂LDSC

∂sp,kθ

∈
{

−2
Uk ,

2Ik

Uk2

}
. While

the values of Uk and Ik will vary between images, we can notice that the gradient boils down to a
weighted negative of the ground truth y. Furthermore, it can be shown easily (notice that Ik and
Uk are bounded by

∑
p∈Ω y

p,k and |Ω|) that while −2 ≤ ∂LDSC

∂sp,kθ

≤ 2, values in practice will be

much closer to 0 than −2 and 2 (see the scale of values in Figure 1.2). Those small gradients might,
therefore, require to use a higher learning rate than for LL2 or LCE if we want to achieve a similar
convergence speed.

Modified losses for imbalanced tasks

For tasks with a big data imbalance (where there is orders of magnitude more background than
foreground pixels, for instance), using an unmodified standard loss can make the training unstable,
or produce a network predicting everything as background. As the vast majority of gradients will
push the predicted probabilities down, sθ will naturally remain very close to 0 over the whole
image. This can cause the cross-entropy, for instance, to produce values going to infinity for the few
foreground pixels, as − log(0) = +∞.

Some modified losses have been proposed [23, 24, 17] to deal with this problem, often weighting
the components of the losses to give a higher priority to the few foreground pixels. As an example,
the often used Generalized Dice Loss (GDL) [23]:

LGDL =
∑
k∈K
−2

wk
F

∑
p∈Ω s

p,k
θ yp,k + wk

F

∑
p∈Ω(1− s

p,k
θ )(1− yp,k)

wk
F

(∑
p∈Ω s

p,k
θ yp,k

)
+ wk

B

(∑
p∈Ω(1− s

p,k
θ )(1− yp,k)

) ,
where wk

F = 1

(
∑

p∈Ω yp,k)
2 and wk

B = 1

(
∑

p∈Ω(1−yp,k))
2 .

1.3 Regularization and random fields in classical computer vision

1.3.1 Random fields: basics

Discrete random fields—also known as Markov random field (MRF) or conditional random field
(CRF)—have been very popular in computer vision for a long time [25], as they can be applied to
a variety of applications and easily embed prior knowledge. A discrete Random Field is a weighted

8As we perform a gradient descent, the gradient needs to be positive to push the probability down.
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graph G = 〈V , E〉 representing the segmentation of an image: each node correspond to a single pixel,
with an associated hidden variable (the labels, y(p)), and weighted undirected edges modelling the
relationship between pixels. Ep = {q ∈ V|(p, q) ∈ E} represent the set of neighbors of p—its adjacent
nodes. CG represents the set of cliques of G.

Each node has an inherent weight, its unary potentialsΦu, representing the likelihood for a pixel
to belongs to a specific target class, and can be derived from another algorithm (such as the output
of a neural network, as we will see later in Section 1.3.2).

The edges weights, called pairwise potentials Φp, can model different relationships between pix-
els: "howmuch" they look alike, if their labels are compatible, or how far are they located from each
others—it can be used to model priors that we have about the problem. For instance, a common
prior in computer vision is about proximity: close pixels tend to have the same class. Another one
is that boundaries between classes tends to be smooth.

With those potentials, we can compute the probability of a segmentation Y (taking the form of
a Gibbs distribution):

P (Y |I) = 1

Z(I)
e
∑

c∈CG
ϕ(Yc|I), (1.12)

where ϕ(Yc|I) is the potential of clique c conditionned over the image I , and 1
Z(I) is a normalizing

constant9. Similarly, we can define the graph energy such as:

E(Y |I) =
∑
c∈CG

ϕc(Yc|I) (1.13)

=
∑
i∈V

ϕu(Y (i)|I) +
∑

(i,j)∈E

ϕp(Y (i), Y (j)|I). (1.14)

In other words, the graph energy represent the cost of a segmentation: assigning an unlikely label
is still possible, but it is not free. By balancing this cost across all pixels with respect to all unary
and pairwise potentials, we obtain the most likely segmentation for this specific graph. If properly
defined, the label assignment Y ∗ that maximize P (Y |I)will produce the most desirable output—for
instance by fitting the image edges snuggingly, or having a smooth contour. An example is given
in Figure 1.3, comparing a plain segmentation (which uses unary potentials only) and a regularized
segmentation with a MRF that minimizes the length of the segmentation. The process of finding
this optimal segmentation is called theMaximumAPosteriori (MAP), which is anNP-hard problem:

Y ∗ = argmax
Y

P (Y |I) (1.15)

= argmin
Y

E(Y |I). (1.16)

9In this section, for clarity and avoid confusion, we will refer as I : Ω → RM as an input image. Similarly, we will
note: ϕ(Yc) := ϕ(Yc|I). The same will applies for ϕu and ϕp.
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Input image Using unary potentials only Final segmentation

Figure 1.3: Illustration of the regularizing effect that a MRF can have, by removing noisy areas in
the segmentation. S1 is the foreground to segment, while S0 the background to remove.

Depending on how the potentials are defined, and the graph topology, different methods exist.
For binary assignments and sparse graphs ( |Ei| << |Ω|)—most commonly a Grid CRF—methods
such a Graph Cut [12] are proved to find a global optimum at a reasonable polynomial complex-
ity. For fully connected graphs ( |Ei| = |Ω| − 1)—which can model more complex relationships
between pixels at longer spatial distances—solving Equation (1.15) exactly becomes intractable.
DenseCRF[26] presents an efficient solution to compute an approximation of the solution, with
convergence guarantee of the algorithm. We detail it in the next section.

1.3.2 Random fields as post-processing: the case of DenseCRF

CNNs for segmentation tend to have coarse outputs, due to the way the final segmentation map Ŷ
is obtained. As showed in Equation (1.7), each pixel is maximized independently and spatial con-
sistency is completely ignored. This can be mitigated with additional post-processing. We present
here themethod of Krahenbühl et al. [26], which, as a post-processing, was popularized byDeepLab
[16]. While not solving the MAP exactly, it computes an approximation of the problem, with con-
vergence guarantees. First, let us present the potentials that they use. When re-using existing softmax
probabilities, the unary potentials are simply:

ϕp(Yp; sθ) := − log (sθ(p, Yp)) .
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The pairwise potentials take into account pixel appearances and their spatial distances:

ϕp,q(Y (p), Y (q);x) := 1[Y (p)=Y (q)]

2∑
m=1

w(m)κ(m)(p, q)

κ(1)(p, q) := w(1)e
− |Ωp−Ωq |2

2ω2
α

− |x(p)−x(q)|2

2ω2
β

κ(2)(p, q) := w(2)e
− |Ωp−Ωq |2

2ω2
γ ,

where Ωp are the pixel coordinates and x(p) their intensity, w(m) are hyper-parameters balancing
the kernels. κ(1) is an appearance kernel: it ensures local consistency for similarly looking pixels.
κ(2) is a smoothness kernel, suppressing small isolated regions that are due to noise. Informally, the
final segmentation boundary has to align with the image edges, while being smooth.

Since solving the equation (1.15) is an NP-Hard problem, a standard method to facilitate it is to
introduce an approximate distribution Q and to minimize it’s KL divergence with P :

Ỹ := argmin
Y

KL(Q(Y )||P (Y )) (1.17)

Q(Y ) :=
∏
i∈ν

Qi(Yi)

Qi(Yi = k) :=
1

Zi
e
−ϕu(Yi=k)−

∑
k′∈K

∑
j∈ϵi

ϕp(Yi=k,Yj=k′)Qj(Yj=k′)
.

As Q is the product of independent components, each Qi can be maximized in parallel, with a
message passing algorithm such as Algorithm 3. The Q̃(m)

i update can be accelerated even further, by
first downsampling the graph using gaussian filtering, performing the update, and then upsampling
it again.

Algorithm 3 Overview of the DenseCRF [26] main algorithm.
Input:
Init Qi(Yi)← 1

Zi
e−ϕu(Yi) ∀i

Output:
Current solution Qi

while Qi not converged do
Q̃

(m)
i (k)←

∑
j∈ϵi κ

(m)(i, j)Qj(k) ∀i ∈ Ω, ∀(m), ∀k ∈ K
Q̂i(k)←

∑
k′∈K 1[Yi=k′]

∑2
m=1w

(m)Q̃
(m)
i (k) ∀i, ∀k

Qi(k)← 1
Zi
e−ϕu(Yi)−Q̂i(Y i) ∀i, ∀k

end while

Because of its good results and rather fast runtime, DenseCRF is now very popular and is used in
many current methods as either post-processing or internal regularizer [16, 27, 4]. Some limitations
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remains, as the implementation is CPU bound (which makes it slower to interract with GPU-based
deep learning methods), and the complete procedure is not derivable. The high number of hyper-
parameters (such as ωα and ωβ controling the appearance kernel, ωγ controlling the distance kernel,
andw(1) andw(2) balancing the two) requires careful tuning on a new datasets, especially when there
is a big discrepancy in contrast and edge sharpness between samples.

1.4 Weakly supervised image segmentation

1.4.1 Partial annotations

The losses that we described in Section 1.2.3 are defined for fully annotated images, i.e., yp is known
∀p ∈ Ω. As those labels are very time consuming to produce, some faster (though imperfect)
alternatives can be envisioned, as illustrated in Figure 1.4. They can be regrouped in two broad
categories: semi-annotations and weak-annotations. Let us denote ΩL ⊆ Ω the set of labeled pixels,
and ΩU ⊆ Ω the set of unlabeled pixels, such as ΩL ∪ ΩU = Ω and ΩL ∩ ΩU = {∅}.

Semi-annotations With those annotations, only a subset ΩL of pixels is annotated, but there is
certainty about those. Examples of such annotations include scribbles and points annotations. The
rest is unknown. Notice that ΩL = Ω correspond to the full annotation case.

Weak-annotations In those cases, the information provided is uncertain, and often correspond to
aMultiple Instance Learning setting. This is the case, for instance, of an image-tags or bounding-boxe
annotation. For the latter, no pixels outside the bounding box belong to the object, but some pixels
inside do, although we are not certain about which ones. Other forms of weak labels may include
higher-level information, such as size, shape moments, or information derived from radiological
reports.

Certainty and uncertainty must be taken into account when designing a method that uses weak
labels.

1.4.2 Training with partial labels

Losses from section 1.2.3 cannot be used directly, even on the restrained subset of annotated pixels
ΩL (doing so simply gives very poor results). Methods designed to use semi- and weak- labels can
be split in two broad categories: proposal based methods and direct losses methods.
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Full supervision The optimization model in full supervision takes the following general form:

min
θ

∑
p∈Ω
L(y(p), sθ(p)),

where L will simply one or a combination of the standard supervised-learning losses introduced
earlier.

Proposal basedmethods As they attempt tomimic full supervision, proposal basedmethods takes
the following general form:

min
θ,ỹ

∑
p∈Ω
L(ỹ(p), sθ(p)),

where ỹ are pseudo-labels or proposals. These methods attempt to generate a full mask, and then train
on it—often alternating between the two. Methods will vary in the way they generate the proposals,
and how often they update it—it quickly involve a high number of heuristics and hyper-parameters
thatmust be very carefully tuned. For instance, DeepCut and othermethods [4, 28, 29, 30] use either
DenseCRF or GraphCut to update their proposals, and might initialize the proposals with GrabCut
[10]. Simple-does-it [29] adds additional heuristics, by discarding proposals where the segmentation
size goes below a certain threshold. In those methods, the proposals are updated every few epochs.
Pathak et al. [3] introduce a proposal to enforce linear constraints on it, and simustaneously update
network predictions and proposals at each iteration.

Direct loss methods The general form is simpler compared to the previous one, as there is only
one variable to optimize:

min
θ

∑
p∈ΩL

L(y(p), sθ(p)) + αR(sθ),

whereR is a regularizer andα a scalar balancing the two objectives. Regularizersmight take different
forms, such as a CRF [31, 32, 33], which can rectify erroneous segmentations when training from
scribbles only. ScribbleSup [34] uses super-pixels to enforce consistency over patches of similar-
looking pixels, while enabling them to directly supervise a higher fraction of the image. The authors
of [35] leverage point annotations in the context of histopathology images. From labeled points,
they derived additional information in the form of a voronoi diagram to generate coarse labels for
nuclei segmentation. Their objective function integrated the cross-entropy with coarse labels and
the conditional random field (CRF) loss in [32].

Advantages of a direct loss We argue that proposal based methods are inherently more unstable
than direct lossmethods, as earlymistakes in ỹ can reinforce themselves by training the networkwith
contradicting information. As convolutional layers are designed to have the same activation for simi-
lar looking patches of images, it is implicitely expected they have the same label. When this is not the
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case, at the back-propagation step, the layer will be updated with two contradicting informations—
cancelling each others. On the contrary, direct losses might supervise less pixels directly, but in a
more reliable way. In this context, less is more. Dealing with those inherent limitations can be done
only with many heuristics, ad-hoc regularizers and careful tuning of the hyper-parameters. This is
not just hypothetical, but verified experimentally in several of our papers, where comparing to pro-
posal based methods showed the same pattern of instability and collapsing predictions, as showed
in Figure 1.5.

Image Full mask Tags

Dot Scribbles Bounding box

Figure 1.4: Illustration and comparison of different semi- and weak-annotations. Blue represents the
background class, red the foreground class, and black is undetermined.

Figure 1.5: Evolution of the proposals from DeepCut [4] on the PROMISE12 dataset [5]: the
prostate segmentation gradually disappears over time.
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1.5 Constrained deep networks

1.5.1 Challenges of standard Lagrangian optimization

Let us first remember the general formulation of constrained optimization in Equation (1.1), and
adapt it to a deep learning setting:

min
θ

∑
n∈D
L(snθ , yn) (1.18)

subject to f1(s
n
θ) ∀n ∈ D

...

fP (s
n
θ) ∀n ∈ D.

In this case, we have P constraints to enforce on every single sample. The Lagrangian corresponding
to (1.18) would be:

max
λ⪰0

min
θ

∑
n∈D
L(snθ , yn) +

P∑
i=1

N∑
n=1

λni fi(s
n
θ) (1.19)

where λ ∈ RP×N
+ is the dual variable (or Lagrange-multiplier) vector, with λni the multiplier associ-

ated with constraint fi(snθ) ≤ 0. A standard Lagrangian would alternatively optimize with respect
to network parameters θ and dual variable λ.

Lagrangian optimization has several well-known theoretical and practical advantages over penalty
methods [36, 37]: it finds automatically the optimal weights of the constraints, acts as a barrier for
satisfied constraints and guarantees constraint satisfaction when feasible solutions exist. Unfortu-
nately, in the case of deep networks, solving exactly the Lagrangian would require to retrain com-
pletely the neural network twice at each iteration, alternating the optimization of a CNN for the
primal with SGD, and projected gradient-ascent iterates for the dual. Due to the time-scales already
at play to train a neural network once (from a few hours to several days), it is simply not feasi-
ble. Another important difficulty in Lagrangian optimization is the interplay between stochastic
optimization (e.g., SGD) for the primal and the iterates/projections for the dual. Basic gradient
methods have well-known issues with deep networks, e.g., they are sensitive to the learning rate and
prone to weak local minima. Therefore, the dual part in Lagrangian optimization might obstruct
the practical and theoretical benefits of stochastic optimization (e.g., speed and strong generalization
performance), which are widely established for unconstrained deep network losses [38]. This is in
line with the results reported by the authors of [39] in the context of 3D human pose estimation.
In their case, replacing the equality constraints with simple quadratic penalties yielded better results
than Lagrangian optimization.
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1.5.2 Challenges of interior point methods

Interior point methods, such as the barrier methods [40, 21], gained a lot of popularity in 60s,
as they can bypass the expensive dual-updates of Lagrangian optimization—while still providing
convergence and optimality guarantees. The requirement for interior-point methods is to start with
a feasible point (θ in the case of deep learning), such as all constraints are satisfied. Then, the original
problem can be optimized with an added barrier that gets close to infinity when the constraints
approach their upper bound (as shown in Figure 1.6). To update the example from Equation (1.18),
the new optimization problem will take the following form:

min
θ

∑
n∈D

L(snθ , yn) + P∑
p=1

ψt (fp(s
n
θ))

 (1.20)

ψt(z) := −
1

t
log(−z), (1.21)

where t > 0 is a scalar value the starts small and is gradually increased over time. Notice that
limt→+∞ ϕt = +∞[z<0]. The reader will quickly notice that ϕt is undefined for z ≥ 0, and the

Figure 1.6: Parameterized log-barrier, for different t values.

infinite penalty as z → 0 prevents the optimization procedure to ever go out of bounds. Depending
on the problem to be solved, finding a strictly feasible starting pointmight not be doable analytically.
In classical optimization, a first step called Phase I is required, and consists of finding a starting point
that satisfies the constraints, without considerations for optimality. Then, a Phase II optimization
will refine this starting point, using the most adapted optimization algorithm for the task.

When dealing with deep networks, where initial weights have to be randomaly initialized, a
feasible starting point cannot be found easily. Moreover, solving the Phase I problem for deep
network is as difficult as solving Phase II. The interior point method becomes self-defeating for deep
networks: in order to solve this constrained optimization problem, one has to first solve it.
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1.5.3 ReLU Lagrangian modification [2]

To accelerate training with a Lagrangian setting, one might decide to relax the alternating updates:
for instance, re-using the parameters from the previous iteration, and updating λ less frequently—
every few epochs. This not only adds arbitrary cut-offs, but also introduces some new instabilities.
As λni is updated less frequently, it can remain positive even when the constrained function fi is
satisfied (fi(snθ) ≤ 0). Because of this, the SGD on θ will continue to minize that term, even
though is should be "out of the way".

To manage this new problem, Nandwani et al. [2] proposed a ReLu modification of the La-
grangian term, avoiding completely the projection steps for the dual variables. The dual variables
λni ∀n ∈ D are also regrouped into a single λi for each constrained function fi, in an attempt to save
memory:

max
λ

min
θ

L(Sθ,λ) = E(θ) +
P∑
i=1

λi

N∑
n=1

max(0, fi(s
n
θ)). (1.22)

Since the gradient ∇λ is always positive, λ can only increase over time. This, we argue, can make
updates and training unstable, especially when there is a high number of competing constraints to
satisfy.

1.5.4 Lagrangian with proposals [3]

Another approach by Pathak et al. was introduced in the context of weakly supervised image seg-
mentation, to constraint the size of the predicted segmentation. The problem they are trying to
solve is therefore:

min
θ

∑
n

LCE(y
n, snθ) (1.23)

s.t. snθ
⊤a1 − b1 � 0 ∀n ∈ D

...

snθ
⊤aP − bP � 0 ∀n ∈ D,

where yn is partially or completely unknown, a1, ..., aP ∈ R|Ω| and b1, ..., bP ∈ RK . The authors
first insight was to rewrite yn as a continuous variable (∈ [0, 1]K×|Ω|), and to introduce a latent
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variable ỹn ∈ [0, 1]K×|Ω|, on which they imposed the linear constraints:

min
ỹ,θ

∑
n

KL(ỹn||snθ) (1.24)

s.t. ỹn⊤a1 − b1 � 0 ∀n ∈ D
...

ỹn⊤aP − bP � 0 ∀n ∈ D
1⊤ỹnp = 1 ∀n ∈ D, ∀p ∈ |Ω|.

where KL denotes the KullbackLeibler divergence.

The corresponding Lagrangian is:

max
λ,ν

min
ỹ,θ

∑
n

KL(ỹn||snθ) +
P∑
i=1

λni (ỹ
n⊤ai − bi) +

∑
p∈Ω

νnp (1
⊤ỹnp − 1)

 (1.25)

s.t. λ � 0,

where λ ∈ RP×|D|
+ and ν ∈ R|D|×|Ω| are the Lagrangian dual variables. Minimizing ỹ, for con-

stant θ,λ,ν, can be solved analytically. Updating λ and ν requires to perform a projected gradient
ascent10. [3] concluded that is was best to perform this at each minibatch, for the corresponding
samples. While limited to linear functions, it could in theory be extended to any function fi. How-
ever, minimizing ỹ would not be analytically solvable anymore, and would (in most cases) requires
a dedicated descent procedure. The introduction of latent variable ỹn makes [3] a proposal based
method, with the same limitations and caveats: early mistakes in the training process can reinforce
themselves, or make the training unstable when partial labels (such as scribbles) are available.

10We detail the whole algorithm and equations in the Supplemental material A.4.
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Abstract

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is cur-
rently attracting significant attention in CNN segmentation as it can mitigate the need for full
and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on
the network output (for instance, to constrain the size of the target region) can leverage unla-
beled data, guiding the training process with domain-specific knowledge. Inequality constraints
are very flexible because they do not assume exact prior knowledge. However, constrained
Lagrangian dual optimization has been largely avoided in deep networks, mainly for computa-
tional tractability reasons. To the best of our knowledge, the method of Pathak et al. [3] is the
only prior work that addresses deep CNNs with linear constraints in weakly supervised seg-
mentation. It uses the constraints to synthesize fully-labeled training masks (proposals) from
weak labels, mimicking full supervision and facilitating dual optimization.

We propose to introduce a differentiable penalty, which enforces inequality constraints
directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal gener-
ation. From constrained-optimization perspective, our simple penalty-based approach is not
optimal as there is no guarantee that the constraints are satisfied. However, surprisingly, it
yields substantially better results than the Lagrangian-based constrained CNNs in [3], while
reducing the computational demand for training. By annotating only a small fraction of the
pixels, the proposed approach can reach a level of segmentation performance that is comparable
to full supervision on three separate tasks. While our experiments focused on basic linear con-
straints such as the target-region size and image tags, our framework can be easily extended to
other non-linear constraints, e.g., invariant shape moments [19] and other region statistics [20].
Therefore, it has the potential to close the gap between weakly and fully supervised learning in
semantic medical image segmentation. Our code is publicly available.

23
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2.1 Introduction

I
n the recent years, deep convolutional neural networks (CNNs) have been domi-
nating semantic segmentation problems, both in computer vision and medical imaging,
achieving ground-breaking performances when full-supervision is available [15, 41, 42].
In semantic segmentation, full supervision requires laborious pixel/voxel annotations,

which may not be available in a breadth of applications, more so when dealing with volumetric
data. Furthermore, pixel/voxel level annotations become a serious impediment for scaling deep
segmentation networks to new object categories or target domains.

To reduce the burden of pixel-level annotations, weak supervision in the form partial or uncer-
tain labels, for instance, bounding boxes [30], points [18], scribbles [34, 31], or image tags [43, 44],
is attracting significant research attention. Imposing prior knowledge on the networks output in
the form of unsupervised loss terms is a well-established approach in machine learning [45, 46].
Such priors can be viewed as regularization terms that leverage unlabeled data, embedding domain-
specific knowledge. For instance, the recent studies in [32, 31] showed that direct regularization
losses, e.g., dense conditional random field (CRF) or pairwise clustering, can yield outstanding re-
sults in weakly supervised segmentation, reaching almost full-supervision performances in natural
image segmentation. Surprisingly, such a principled direct-loss approach is not common in weakly
supervised segmentation. In fact, most of the existing techniques synthesize fully-labeled training
masks (proposals) from the available partial labels, mimicking full supervision [4, 28, 34, 47]. Typ-
ically, such proposal-based techniques iterate two steps: CNN learning and proposal generation
facilitated by dense CRFs and fast mean-field inference [48], which are now the de-facto choice for
pairwise regularization in semantic segmentation algorithms.

Our purpose here is to embed high-order (global) inequality constraints on the network outputs
directly in the loss function, so as to guide learning. For instance, assume that we have some prior
knowledge on the size (or volume) of the target region, e.g., in the form of lower and upper bounds
on size, a common scenario in medical image segmentation [49, 50]. Let I : Ω ⊂ R2,3 → R denotes
a given training image, with Ω a discrete image domain and |Ω| the number of pixels/voxels in the
image. ΩL ⊆ Ω is a weak (partial) ground-truth segmentation of the image, taking the form of
a partial annotation of the target region, e.g., a few points (see Figure 2.2). In this case, one can
optimize a partial cross-entropy loss subject to inequality constraints on the network outputs [3]:

min
θ
H(S) s.t a ≤

∑
p∈Ω

Sp ≤ b (2.1)

where S = (S1, . . . , S|Ω|) ∈ [0, 1]|Ω| is a vector of softmax probabilities1 generated by the network at
each pixel p andH(S) = −

∑
p∈ΩL

log(Sp). Priors a and b denote the given upper and lower bounds

1The softmax probabilities take the form: Sp(θ, I) ∝ exp fp(θ, I), where fp(θ, I) is a real scalar function represent-
ing the output of the network for pixel p. For notation simplicity, we omit the dependence of Sp on θ and I as this does
not result in any ambiguity in the presentation.



2.1 Introduction | 25

on the size (or cardinality) of the target region. Inequality constraints of the form in (2.1) are very
flexible because they do not assume exact knowledge of the target size, unlike [51, 52, 53]. Also,
multiple instance learning (MIL) constraints [3], which enforce image-tag priors, can be handled by
constrained model (2.1). Image tags are a form of weak supervision, which enforce the constraints
that a target region is present or absent in a given training image [3]. They can be viewed as particular
cases of the inequality constraints in (2.1). For instance, a suppression constraint, which takes the
form

∑
p∈Ω Sp ≤ 0, enforces that the target region is not in the image.

∑
p∈Ω Sp ≥ 1 enforces the

presence of the region.

Even though constraints of the form (2.1) are linear (and hence convex) with respect to the net-
work outputs, constrained problem (2.1) is very challenging due to the non-convexity of CNNs.
One possibility would be to minimize the corresponding Lagrangian dual. However, as pointed
out in [3, 39], this is computationally intractable for semantic segmentation networks involving
millions of parameters; one has to optimize a CNN within each dual iteration. In fact, constrained
optimization has been largely avoided in deep networks [54], even thought some Lagrangian tech-
niques were applied to neural networks a long time before the deep learning era [55, 56]. These
constrained optimization techniques are not applicable to deep CNNs as they solve large linear sys-
tems of equations. The numerical solvers underlying these constrained techniques would have to
deal with matrices of very large dimensions in the case of deep networks [39].

To the best of our knowledge, the method of Pathak et al. [3] is the only prior work that ad-
dresses inequality constraints in deep weakly supervised CNN segmentation. It uses the constraints
to synthesize fully-labeled training masks (proposals) from the available partial labels, mimicking
full supervision, which avoids intractable dual optimization of the constraints when minimizing the
loss function. The main idea of [3] is to model the proposals via a latent distribution. Then, it mini-
mize a KL divergence, encouraging the softmax output of the CNN to match the latent distribution
as closely as possible. Therefore, they impose constraints on the latent distribution rather than on
the network output, which facilitates Lagrangian dual optimization. This decouples stochastic gra-
dient descent learning of the network parameters and constrained optimization: The authors of [3]
alternate between optimizing w.r.t the latent distribution, which corresponds to proposal genera-
tion subject to the constraints2, and standard stochastic gradient descent for optimizing w.r.t the
network parameters.

We propose to introduce a differentiable term, which enforces inequality constraints (2.1) di-
rectly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation.
From constrained optimization perspective, our simple approach is not optimal as there is no guar-
antee that the constraints are satisfied. However, surprisingly, it yields substantially better results
than the Lagrangian-based constrained CNNs in [3], while reducing the computational demand for
training. In the context of cardiac image segmentation, we reached a performance close to full su-
pervision while using a fraction of the full ground-truth labels (0.1%). Our framework can be easily
extended to non-linear inequality constraints, e.g., invariant shape moments [19] or other region
statistics [20]. Therefore, it has the potential to close the gap between weakly and fully supervised

2This sub-problem is convex when the constraints are convex.



26 | Chapter 2 Constrained-CNN losses

learning in semantic medical image segmentation. Our code is publicly available 3.

2.2 Related work

2.2.1 Weak supervision for semantic image segmentation

Training segmentation models with partial and/or uncertain annotations is a challenging problem
[57, 58]. Due to the relatively easy task of providing global, image-level information about the
presence or absence of objects in an image, many weakly supervised approaches used image tags
to learn a segmentation model [59, 60]. For example, in [59], a probabilistic latent semantic anal-
ysis (PLSA) model was learned from image-level keywords. This model was later employed as a
unary potential in a Markov random field (MRF) to capture the spatial 2D relationships between
neighbours. Also, bounding boxes have become very popular as weak annotations due, in part,
to the wide use of classical interactive segmentation approaches such as the very popular GrabCut
[10]. This method learns two Gaussian mixture models (GMM) to model the foreground and back-
ground regions defined by the bounding box. To segment the image, appearance and smoothness
are encoded in a binary MRF, for which exact inference via graph-cuts is possible, as the energies
are sub-modular. Another popular form of weak supervision is the use of scribbles, which might be
performed interactively by an annotator so as to correct the segmentation outcome.

GrabCut is a notable example in a wide body of “shallow” interactive segmentation works that
used weak supervision before the deep learning era. More recently, within the computer vision
community, there has been a substantial interest in leveraging weak annotations to train deep CNNs
for color image segmentation using, for instance, image tags [3, 61, 62, 28, 43, 44], bounding boxes
[30, 4, 29], scribbles [63, 34, 64, 32, 31] or points [18]. Most of these weakly supervised semantic
segmentation techniques mimic full supervision by generating full training masks (segmentation
proposals) from the weak labels. The proposals can be viewed as synthesized ground-truth used
to train a CNN. In general, these techniques follow an iterative process that alternates two steps:
(1) standard stochastic gradient descent for training a CNN from the proposals; and (2) standard
regularization-based segmentation, which yields the proposals. This second step typically uses a
standard optimizer such mean-field inference [28, 4] or graph cuts [34]. In particular, the dense
CRF regularizer of Krähenbühl and Koltun [48], facilitated by fast parallel mean-field inference,
has become very popular in semantic segmentation, both in the fully [27, 16] and weakly [28, 4]
supervised settings. This followed from the great success of DeepLab [16], which popularized the
use of dense CRF and mean-field inference as a post-processing step in the context fully supervised
CNN segmentation.

An important drawback of these proposal strategies is that they are vulnerable to errors in the
proposals, which might reinforce themselves in such self-taught learning schemes [65], undermining
convergence guarantee. The recent approaches in [32, 31] have integrated standard regularizers such

3The code can be found at https://github.com/LIVIAETS/SizeLoss_WSS

https://github.com/LIVIAETS/SizeLoss_WSS
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as dense CRF or pairwise graph clustering directly into the loss functions, avoiding extra inference
steps or proposal generation. Such direct regularization losses achieved state-of-the-art performances
for weakly supervised color segmentation, reaching near full-supervision accuracy. While these
approaches encourage pairwise consistencies between pixels during training, they do not explicitly
impose global constraint as in (2.1).

2.2.2 Medical image segmentation with weak supervision

Despite the increasing amount of works focusing on weakly supervised deep CNNs in semantic seg-
mentation of color images, leveraging weak annotations in medical imaging settings is not simple.
To our knowledge, the literature on this matter is still scarce, which makes weak-supervision ap-
proaches appealing in medical image segmentation. As in color images, common settings for weak
annotations are bounding boxes. For instance, DeepCut [4] follows a similar setting as [28]. It
generates image proposals, which are refined by a dense CRF before being re-used as “fake” labels to
train the CNN. Using the bounding boxes as initializations for the Grab-cut algorithm, the authors
showed that, by this iterative optimization scheme, one can obtain a performance better than the
shallow counterpart, i.e., GrabCut. In another weakly supervised scenario [66], images were seg-
mented in an unsupervised manner, generating a set of super-pixels [67], among which users had to
select the regions belonging to the object of interest. Then, these masks generated from the super-
pixels were employed to train a CNN. Nevertheless, as proposals are generated in an unsupervised
manner, and due to the poor contrast and challenging targets typically present in medical images,
these “fake” labels are likely prone to errors, which can be propagated during training, as stated
before.

2.2.3 Constrained CNNs

To the best of our knowledge, there are only a few recent works [3, 39, 53] that addressed imposing
global constraints on deep CNNs. In fact, standard Lagrangian-dual optimization has been com-
pletely avoided in modern deep networks involving millions of parameters. As pointed out recently
in [3, 39], there is a consensus within the community that imposing constraints on the outputs of
deep CNNs that are common in modern computer vision and medical image analysis problems is
impractical: the direct use of Lagrangian-dual optimization for networks with millions of parame-
ters requires training a whole CNN after each iterative dual step [3]. To avoid computationally in-
tractable dual optimization, Pathak et al. [3] imposed inequality constraints on a latent distribution
instead of the network output. This latent distribution describes a “fake” ground truth (or segmen-
tation proposal). Then, they trained a single CNN so as to minimize the KL divergence between
the network probability outputs and the latent distribution. This prior-art work is the most closely
related to our study and, to our knowledge, is the only work that addressed inequality constraints
in weakly supervised CNN segmentation. The work in [39] imposed hard equality constraints on
3D human pose estimation. To tackle the computational difficulty, they used a Kyrlov sub-space
approach and limited the solver to only a randomly selected sub-set of the constraints within each
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iteration. Therefore, constraints that are satisfied at one iteration may not be satisfied at the next,
which might explain the negative results in [39]. A surprising result in [39] is that replacing the
equality constraints with simple L2 penalties yields better results than Lagrangian optimization,
although such a simple penalty-based formulation does not guarantee constraint satisfaction. A sim-
ilar L2 penalty was used in [53] to impose equality constraints on the size of the target regions in the
context of histopathology segmentation. While the equality-constrained formulations in [39, 53]
are very interesting, they assume exact knowledge of the target function (e.g., region size), unlike
the inequality-constraint formulation in (2.1), which allows much more flexibility as to the required
prior domain-specific knowledge.

2.3 Proposed loss function

We propose the following loss for weakly supervised segmentation:

H(S) + λ C (VS), (2.2)

where VS =
∑

p∈Ω Sp, λ is a positive constant that weighs the importance of constraints, and
function C is given by (See the illustration in Fig. 2.1):

C(VS) =


(VS − a)2 , if VS < a

(VS − b)2 , if VS > b

0, otherwise
(2.3)

Now, our differentiable term C accommodates standard stochastic gradient descent. During back-
propagation, the term of gradient-descent update corresponding to C can be written as follows:

−∂C(VS)
∂θ

∝


(a− VS) ∂Sp

∂θ , if VS < a

(b− VS) ∂Sp

∂θ , if VS > b

0, otherwise
(2.4)

where ∂Sp

∂θ denotes the standard derivative of the softmax outputs of the network. The gradient in
(2.4) has a clear interpretation. During back-propagation, when the current constraints are satisfied,
i.e., a ≤ VS ≤ b, observe that ∂C(VS)

∂θ = 0. Therefore, in this case, the gradient stemming from our
term has no effect on the current update of the network parameters. Now, suppose without loss
of generality that the current set of parameters θ corresponds to VS < a, which means the current
target region is smaller than its lower bound a. In this case of constraint violation, term (a − VS)
is positive and, therefore, the first line of (2.4) performs a gradient ascent step on softmax outputs,
increasing Sp. This makes sense because it increases the size of the current region, VS , so as to satisfy
the constraint. The case VS > b has a similar interpretation.

The next section details the dataset, the weak annotations and our implementation. Then, we
report comprehensive evaluations of the effect of our constrained-CNN losses on segmentation
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Figure 2.1: Illustration of our differentiable loss for imposing soft size constraints on the target
region.

performance. We also report comparisons to the Lagrangian-based constrained CNN method in
[3] and to the fully supervised setting.

2.4 Experiments

2.4.1 Medical Image Data

In this section, the proposed loss function is evaluated on three publicly available datasets, each
corresponding to a different application—cardiac, vertebral body and prostate segmentation. Below
are additional details of these data sets.

Left-ventricle (LV) on cine MRI A part of our experiments focused on left ventricular endo-
cardium segmentation. We used the training set from the publicly available data of the 2017 ACDC
Challenge4. This set consists of 100 cine magnetic resonance (MR) exams covering well defined
pathologies: dilated cardiomyopathy, hypertrophic cardiomyopathy, myocardial infarction with al-
tered left ventricular ejection fraction and abnormal right ventricle. It also included normal subjects.
Each exam contains acquisitions only at the diastolic and systolic phases. The exams were acquired
in breath-hold with a retrospective or prospective gating and a SSFP sequence in 2-chambers, 4-
chambers and in short-axis orientations. A series of short-axis slices cover the LV from the base to
the apex, with a thickness of 5 to 8 mm and an inter-slice gap of 5 mm. The spatial resolution goes
from 0.83 to 1.75 mm2/pixel. For all the experiments, we employed the same 75 exams for training
and the remaining 25 for validation.

Vertebral body (VB) on MR-T2 This dataset contains 23 3D T2-weighted turbo spin echo MR
images from 23 patients and the associated ground-truth segmentation, and is freely available from
5. Each patient was scanned with 1.5 Tesla MRI Siemens scanner (Siemens Healthcare, Erlangen,

4https://www.creatis.insa-lyon.fr/Challenge/acdc/
5http://dx.doi.org/10.5281/zenodo.22304
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Germany) to generate T2-weighted sagittal images. All the images are sampled to have the same
sizes of 39×305×305 voxels, with a voxel spacing of 2×1.25×1.25 mm3. In each image, 7 vertebral
bodies, from T11 to L5, were manually identified and segmented, resulting in 161 labeled regions in
total. For this dataset, we employed 15 scans for training and the remaining 5 for validation.

Prostate segmentation on MR-T2 The third dataset was made available at the MICCAI 2012
prostate MR segmentation challenge6. It contains the transversal T2-weighted MR images of 50
patients acquired at different centers with multiple MRI vendors and different scanning protocols.
It is comprised of various diseases, i.e., benign and prostate cancers. The images resolution ranges
from 15 × 256 × 256 to 54 × 512 × 512 voxels with a spacing ranging from 2 × 0.27 × 0.27 to
4× 0.75× 0.75mm3. We employed 40 patients for training and 10 for validation.

2.4.2 Weak annotations

To show that the proposed approach is robust to the strategy for generating the weak labels, as well
as to their location, we consider two different strategies generating weak annotations from fully
labeled images. Figure 2.2 depicts some examples of fully annotated images and the corresponding
weak labels.

Erosion For the left-ventricle dataset, we employed binary erosion on the fully annotations with
a kernel of size 10×10. If the resulted label disappeared, we repeated the operation with a smaller
kernel (i.e., 7×7) until we get a small contour. Thus, the total number of annotated pixels repre-
sented the 0.1% of the labeled pixels in the fully supervised scenario. This correspond to the second
row in Figure 2.2.

Random point The weak labels for the vertebral body and prostate datasets were generated by
randomly selecting a point within the ground-truth mask and creating a circle around it with a
maximum radius of 4 pixels (fourth and sixth row in Fig. 2.2), while ensuring there is no overlap
with the background. With these weak annotations, only 0.02% of the pixels in the dataset have
ground-truth labels.

2.4.3 Different levels of supervision

Training models with diverse levels of supervision requires that appropriate objectives be defined for
each case. In this section, we introduce the different models, each with different levels of supervision.

6https://promise12.grand-challenge.org

https://promise12.grand-challenge.org
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Figure 2.2: Examples of different levels of supervision. In the fully labeled images (top), all pixels
are annotated, with red depicting the background and green the region of interest. In the weakly
supervised cases (bottom), only the labels of the green pixels are known. The images were cropped
for a better visualization of the weak labels. The original images are of size 256 × 256 pixels.
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Baselines

We trained a segmentation network from weakly annotated images with no additional information,
which served as a lower baseline. Training this model relies on minimizing the cross-entropy corre-
sponding to the fraction of labeled pixels: H(S) = −

∑
p∈ΩL

log(Sp). In the following discussion
of the experiments, we refer to this model as partial cross-entropy (CE).

As an upper baseline, we resort to the fully-supervised setting, where class labels (foreground
and background) are known for every pixel during training (ΩL = Ω). This model is referred to as
fully-supervised.

Size constraints

We incorporated information about the size of the target region during training, and optimized
the partial cross-entropy loss subject to inequality constraints of the general form in Eq. (2.1). We
trained several models using the same weakly annotated images but different constraint values.

Image tags bounds Similar to MIL scenarios, we first used image-tag priors by enforcing the
presence or absence of a the target in a given training image, as introduced earlier. This reduces to
enforcing that the size of the predicted region is less or equal to 0 if the target is absent from the
image, or larger than 0 otherwise. To simplify the implementation, we can represent the constraints
as:

a, b =

{
1, |Ω| if target is present (ΩL 6= ∅)
0, 0 otherwise

. (2.5)

While being very coarse, these constraints convey relevant information about the target regions,
which may be used to find common patterns in the case of region absence or presence.

Common bounds The next level of supervision consists of using tighter bounds for the positive
cases, instead of (1, |Ω|). To this end, the complete segmentation of a single patient is employed
to compute the minimum and maximum size of the target region across all the slices. Then, we
multiplied these minimum and maximum values by 0.9 and 1.1, respectively, to account for inter-
patient variability. In this case, all the images containing the object of interest have the same lower
and upper bounds. As an example, this results in the following values for the ACDC dataset:

a, b =

{
60, 2000 if target is present (ΩL 6= ∅)
0, 0 otherwise

. (2.6)

Individual bounds With common bounds, the range of values for a given target may be very
large. To investigate whether a more precise knowledge of the target is helpful, we also consider the
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use of individual bounds for each slice, based on the true size of the region:

τY =
∑
p∈Ω

Yp,

with Y = (Y1, ..., Y|Ω|) ∈ {0, 1}|Ω| denoting the full annotation of image I . As before, we introduce
some uncertainty on the target size, and multiply τY by the same lower and upper factors, resulting
in the following bounds:

a, b =

{
0.9τY , 1.1τY if target is present (ΩL 6= ∅)
0, 0 otherwise

. (2.7)

Hybrid training

We also investigate whether combining our proposed weak supervision approach with fully anno-
tated images during the training leads to performance improvements. For this purpose, considering
we have a training set of m weakly annotated images, we replace n (n < m) among these by their
fully annotated counterparts. Thus, the training amounts to minimizing the cross-entropy loss for
the n fully annotated images, along with the partial cross-entropy constrained with common size
bounds for the remainingm− n weakly labeled images. To examine the positive effect of size con-
straints in this scenario (referred to as Hybrid), we compare the results to a network trained with
the n fully annotated images (without constraints).

2.4.4 Constraining a 3D volume

We can extend our formulation to constrain a 3D volume as follows:∑
S∈B
H(S) + λC(VB), with VB =

∑
S∈B

VS

where VB denotes the target-region volume, B = ((Y 1, S1), ..., (Y |B|, S|B|)) denotes a training batch
containing all the 2D slices of the 3D volume7, and the 3D constraints are now given by:

a, b = 0.9τB, 1.1τB, with τB =
∑
Y ∈B

τY

Notice that, with constraints on the whole 3D volume, we have less supervision than the 2D sce-
narios from 2.4.3, where all the 2D slices have independent supervision (e.g., the image tags).

7For readability, we simplify a batch as a list of labels Y and associated predictions S.
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2.4.5 Training and implementation details

For the experiments on the left-ventricle and vertebral-body datasets, we used ENet [68], as it has
shown a good trade-off between accuracy and inference time. Due to the higher difficulty of the
prostate segmentation task, we employed a fully residual version of U-Net [17], similar to [69].

For the three datasets, we trained the networks from scratch using the Adam optimizer and
an initial learning rate of 5 × 10−4 that we decreased by a factor of 2 if the performances on the
validation set did not improve over 20 epochs. All the 3D volumes were sliced into 256× 256 pixels
images, and zero-padded when needed. Batch sizes were equal to 1, 4, and 20 for the left-ventricle,
prostate and vertebral body, respectively. Those values were not tuned for optimal performances,
but to speed-up experiments when enough data were available. The weight of our loss in (2.2)
was empirically set to 1×10−2. Due to the difficulty of the task, data augmentation was used for
the prostate dataset, where we generated 4 copies of each training image using random mirroring,
flipping and rotation.

All our tests were implemented in Pytorch [70]. We ran the experiments on a machine equipped
with a NVIDIA GTX 1080 Ti GPU (11GBs of video memory), AMD Ryzen 1700X CPU and
32GBs of memory. The code is available at https://github.com/LIVIAETS/SizeLoss_WSS. We
used the common Dice similarity coefficient (DSC) to evaluate the segmentation performance of
trained models.

Modification and tweaks for Lagrangian proposals For a fair comparison, we re-implemented
the Lagrangian-proposal method of Pathak et al. [3] in PyTorch, to take advantage of GPU ca-
pabilities and avoid costly transfers between GPU and CPU. Lagrangian proposals reuse the same
network and loss function as the fully-supervised setting. At each iteration, the method alternates
between two steps. First, it synthesizes a ground truth Ỹ with projected gradient ascent (PGA) over
the dual variables, with the network parameters fixed. Then, for fixed Ỹ , the cross-entropy between
Ỹ and S is optimized as in standard fully-supervised CNN training. The learning rate used for this
PGA was set experimentally to 5× 10−5, as sub-optimal values lead to numerical errors. We found
that limiting the number of iterations for the PGA to 500 (instead of the original 3000) saved time
without affecting the results. We also introduced an early stopping mechanism into the PGA in the
case of convergence, to improve speed without impacting the results (a comparison can be found in
Table 2.5). The constraints of the form 0 ≤ VS ≤ 0 required specific care, as the formulation from
[3] is not designed to work on equalities, unlike our penalty approach, which systematically handles
equality constraints when a = b. In this case, the bounds for [3] were modified to −1 ≤ VS ≤ 0.

2.5 Results

To validate the proposed approach, we first performed a series of experiments focusing on LV seg-
mentation. In Sec. 2.5.1, the impact of including size constraints is evaluated using our direct

https://github.com/LIVIAETS/SizeLoss_WSS
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penalty. We further compare to the Lagrangian-proposal method in [3], showing that our simple
method yields substantial improvements over [3] in the same weakly supervised settings. We also
provide the results for several degrees of supervision, including hybrid and fully supervised learning
in Sec. 2.5.2. Then, to show the wide applicability of the proposed constrained loss, results are
reported for two other applications in Sec. 2.5.3: MR-T2 vertebral body segmentation and prostate
segmentation task. We further provide qualitative results for the three applications in Sec. 2.5.4. In
Sec. 2.5.5, we investigate the sensitivity of the proposed loss to both the lower and upper bounds. Fi-
nally, the efficiency of different learning strategies are compared (Sec. 2.5.6), showing that our direct
constrained-CNN loss does not add to the training time, unlike the Lagrangian-proposal method in
[3].

2.5.1 Weakly supervised segmentation with size constraints

2D segmentation Table 2.1 reports the results on the left-ventricle validation set for all the models
trained with both the Lagrangian proposals in [3] and our direct loss. As expected, using the partial
cross entropy with a fraction of the labeled pixels yielded poor results, with a mean DSC less than
15%. Enforcing the image-tag constraints, as in the MIL scenarios, increased substantially the DSC
to a value of 0.7924. Using common bounds increased the results marginally in this case, slightly
increasing the mean Dice value by 1%. The Lagrangian proposal [3] reaches similar results, albeit
slightly lower and much more unstable than our penalty approach (see Figure 2.3).

The difference in performance is more pronounced when we employ individual bounds instead.
In this setting, ourmethod achieves a DSC of 0.8708, only 2% lower than full supervision. However,
the Lagrangian-proposal method achieves a performance similar to using common (loose) bounds,
suggesting that it is not able to make use of this extra, more precise information. This can be ex-
plained by its proposal-generation method, which tends to reinforce early mistakes (especially when
training from scratch): the network is trained with conflicting information—i.e., similar-looking
patches are both foreground and background according the the synthetic ground truth—and is not
able to recover from those initial mis-classifications.

3D segmentation Constraining the size of the 3D volume of the target region also shows the
benefit of our penalty approach, yielding a mean DSC of 0.8580. Recall that, here, we are using less
supervision than the 2D case. Since we do not use tag information in this case, these results suggest
that only a fraction of all the slices may be used when creating the labels, allowing annotators to
scribble the 3D image directly instead of going through all the 2D slices one by one.

2.5.2 Hybrid training: mixing fully and weakly annotated images

Table 2.2 and Figure 2.4 summarize the results obtained when combining weak and full supervi-
sion. First, and as expected, we can observe that adding n fully annotated images to the training set
(Hybrid_n) improves the performances in comparison to the model trained solely with the weakly
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Table 2.1: Left-ventricle segmentation results with different levels of supervision. Bold font high-
lights the best weakly supervised setting.

Model Method DSC (Val)

Weakly
supervised

Partial CE 0.1497
CE + Tags Lagrangian Proposals [3] 0.7707
Partial CE + Tags Direct loss (Ours) 0.7924
CE + Tags + Size* Lagrangian Proposals [3] 0.7854
Partial CE + Tags + Size* Direct loss (Ours) 0.8004
CE + Tags + Size** Lagrangian Proposals [3] 0.7900
Partial CE + Tags + Size** Direct loss (Ours) 0.8708
CE + 3D Size** Lagrangian Proposals [3] N/A
Partial CE + 3D Size** Direct loss (Ours) 0.8580

Fully
supervised Cross-entropy 0.8872

*Common bounds / ** Individual bounds

annotated images, i.e., Weak_All. Particularly, the DSC increases by 4%,5% and 6% when n is
equal to 5,10 and 25, respectively, approaching the full-supervision performance with only 25% of
the fully labeled images.

Nevertheless, it is more interesting to see the impact of adding weakly annotated images (i.e.,
Hybrid_n) to a model trained solely with fully labeled images (i.e., Full_n). From the results, we
can observe that adding weakly annotated images to the training set significantly increases the per-
formance, particularly when the amount of fully annotated images (i.e., n) is limited. For instance,
in the case of n equal to 5, adding weakly annotated images enhanced the performance by more
than 30% in comparison to full supervision with n equal to 5. Despite the fact that this gap de-
creases with the number of fully annotated images, the difference between both settings (i.e., Full
andHybrid) remains significant. More interestingly, training the samemodel with a high amount of
weakly annotated images and no or a very reduced set of fully labeled images (for exampleWeak_All
or Hybrid_5) achieves better performances than employing datasets with much higher numbers of
fully labeled images, e.g, Full_25.

These results suggest that a good strategy when annotating a new dataset might be to start with
weak labels for all the images, and progressively complete full annotations, should ressources become
available.

2.5.3 MR-T2 vertebral body and prostate segmentation

The results obtained for the vertebral-body dataset (Table 2.3) highlight well the differences in the
performances of different levels of supervision. Using tag bounds produces a network that roughly
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Figure 2.3: Evolution of the DSC during training for the left-ventricle validation set, including the
weakly supervised learning models and different strategies analyzed, with also the full-supervision
setting. As tags and common bounds achieve similar results, we plot only common bounds for
better readability.

locates the object of interest (DSC of 0.5597), but fails to identify its boundaries (as seen in Fig-
ure 2.6, third column). Employing the common size strategy achieves satisfactory results for the
slices containing objects with a regular shape but still fails when more difficult/irregular targets are
present, resulting in an overall improvement of DSC (0.7900). However, when using individual
bounds, the network is able to satisfactory segment even the most difficult cases, obtaining a DSC
of 0.8604, only 3% lower than full supervision.

For the prostate dataset, one can observe that common bounds still improve the results obtained
with tags (+3%), but the difference is much smaller than the case of vertebral-body segmentation.
Using individual bounds increases the DSC value by 10%, reaching 0.8298, a behaviour similar to
what we observed earlier for the other datasets. Nevertheless, in this case, the gap between full and
weak supervision with individual bounds constraints is larger than what we obtained for the other
datasets.

2.5.4 Qualitative results

To gain some intuition on different learning strategies and their impact on the segmentation, we
visualize some results sampled from the validation sets in Fig. 2.5, 2.6 and 2.7 for LV, VB and
prostate, respectively.

LV segmentation task We compare 4 methods to the ground truth: full supervision, Lagrangian
proposals [3] with common bounds, direct loss with common bounds and direct loss with individual
bounds. We can see that, for the easy cases containing regular shapes and visible borders, all methods
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Table 2.2: Ablation study on the amounts of fully and weakly labeled data. We report the mean
DSC of all the testing cases, for all the settings and using the same architecture.

Name Training approach # Fully/Weakly
annotated images DSC

Weak_All Weak supervision* 0/150 0.8004
Full_5 Full supervision 5/0 0.5434
Hybrid_5 Full + weak supervision* 5/145 0.8386
Full_10 Full supervision 10/0 0.6004
Hybrid_10 Full + weak supervision* 10/140 0.8475
Full_25 Full supervision 25/0 0.7680
Hybrid_25 Full + weak supervision* 25/125 0.8641
Full_All Full supervision 150/0 0.8872
*Common bounds

Table 2.3: Mean Dice scores (DSC) for several degrees of supervision, using the vertebral-body and
prostate validation sets. Bold font indicates the best weakly supervised setting for each data set.

Method Vertebral body DSC Prostate DSC

Partial CE 0.1155 0.0320
Partial CE + Tags 0.5597 0.6911
Partial CE + Tags + Common size 0.7900 0.7214
Partial CE + Tags + Individual size 0.8604 0.8298
Fully supervised 0.8999 0.8911

obtain similar results. However, the methods employing common bounds can easily over-segment
the object, especially when their size is considerably smaller; see for example the last row in Figure
2.5. Since individual bounds are specific to each image, a model trained with these bounds will not
suffer in such cases, as shown in the figure.

Vertebral-body segmentation task In this case, we visualize the results of full supervision, tag
bounds, common bounds and individual bounds. In line with results reported in Table 2.3, we can
visually observe the gap in performances between each setting, which clearly highlights the impact
of the different values of the bounds during the optimization process. Using only tags, the network
learn to roughly locate the object. When size bounds are included as common size information,
the network is able to somehow learn the boundaries, but only for object shapes that are within
the standard variability of a typical vertebral body shape. As it can be observed, the model fails to
segment the unusual shapes (last three rows in Figure 2.6). Lastly, a network trained with individual
sizes is able to better handle those cases, while still being imprecise on some regions.
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Figure 2.4: Mean DSC values over the number of fully annotated patients employed for training.

Prostate segmentation task As in the previous case, we depict the results of full supervision,
tag bounds, common bounds and individual bounds. Both the tags and common bounds locate
the object in a similar fashion, but both have difficulties finding a precise contour, typically over-
segmenting the target region. This is easily explained by the variability of the organ and the very low
contrast on some images. As shown in the last column, using individual bounds greatly improves
the results.

2.5.5 Sensitivity to the constraint boundaries

In this section, an ablation study is performed on the lower and upper bounds when using common
bounds, and investigate their effect on the performance on the vertebral-body segmentation task.
Results for different bounds are reported in Table 2.4. It can be observed that progressively increas-
ing the value of the upper bound decreases the performance. For example, the DSC drops by nearly
12% and 16% when the upper bound is increased by a factor of 5 and 10, respectively. Decreasing
the lower bound from 80 to 0 has a much smaller impact than the upper bound, with a constant
drop of less than 1%. These findings are aligned with visual predictions illustrated in Figure 2.6.
While a network trained only with tag bounds tends to over-segment, adding an upper bound easily
fixes the over-segmentation, correcting most of the mistakes. Nevertheless, for the same reason, i.e.,
over-segmentation, very few slices benefit from a lower bound.



40 | Chapter 2 Constrained-CNN losses

Figure 2.5: Qualitative comparison of the different methods using examples from the LV dataset.
Each column depicts segmentations obtained by different methods, whereas each row represents a
2D slice from different scans (Best viewed in colors).

2.5.6 Efficiency

In this section, we compare the several learning approaches in terms of efficiency (Table 2.5). Both
the weakly supervised partial cross-entropy and the fully supervised model need to compute only
one loss per pass. This is reflected in the lowest training times reported in the table. Including the
size loss does not add to the computational time, as can be seen in these results. As expected, the iter-
ative process introduced by [3] at each forward pass adds a significant overhead during training. To
generate their synthetic ground truth, they need to optimize the Lagrangian function with respect to
its dual variables (Lagrange multipliers of the constraints), which requires alternating between train-
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Figure 2.6: Qualitative comparison using examples from the VB dataset. Each column depicts seg-
mentations obtained by different levels of supervision, whereas each row represents a 2D slice from
different scans (Best viewed in colors).

Table 2.4: Ablation study on the lower and upper bounds of the size constraint using the vertebral
body dataset.

Bounds Mean DSC

Model Lower (a) Upper (b)

Weak Sup. w/ direct loss 0.9τY 1.1τY 0.8604
Weak Sup. w/ direct loss 80 1100 0.7900
Weak Sup. w/ direct loss 80 5000 0.6704
Weak Sup. w/ direct loss 80 10000 0.6349
Weak Sup. w/ direct loss 0 1100 0.7820
Weak Sup. w/ direct loss 0 5000 0.6694
Weak Sup. w/ direct loss 0 10000 0.6255
Weak Sup. w/ direct loss 0 65536 0.5597

ing a CNN and Lagrangian-dual optimization. Even in the simplest optimization case (with only
one constraint), where optimization over the dual variable converges rapidly, their method remains
two times slower than ours. Without the early stopping criteria that we introduced, the overhead is
much worse with a six-fold slowdown. In addition, their method also slows down when more con-
straints are added. This is particularly significant when there is many classes to constrain/supervise.

Generating the proposals at each iteration also makes it much more difficult to build an effi-
cient implementation for larger batch sizes. One either needs to generate them one by one (so the
overhead grows linearly with the batch size) or try to perform it in parallel. However, due to the
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Figure 2.7: Qualitative comparison of the different levels of supervision. Each row represents a 2D
slice from different scans. (Best viewed in colors)

nature of GPU design, the parallel Lagrangian optimizations will slow each other down, meaning
that there may be limited improvements over a sequential generation. In some cases it may be faster
to perform it on CPU (where the cores can truly perform independent tasks in parallel), at the cost
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of slow transfers between GPU and CPU. The optimal strategy would depend on the batch size and
the host machine, especially its available GPU, number of CPU cores and bus frequency.

Table 2.5: Training times for the diverse supervised learning strategies with a batch size of 1, using
tags and size constraints.

Method Training time (ms/batch)

Partial CE 112
Direct loss (1 bound) 113
Direct loss (2 bounds) 113
Lagrangian proposals (1 bound) 610
Lagrangian proposals (2 bounds) 675
Lagrangian proposals (1 bound), w/ early stop 221
Lagrangian proposals (2 bounds), w/ early stop 220
Fully supervised 112

2.6 Discussion

We have presented a method to train deep CNNs with linear constraints in weakly supervised seg-
mentation. To this end, we introduce a differentiable term, which enforces inequality constraints
directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation.

Results have demonstrated that leveraging the power of weakly annotated data with the pro-
posed direct size loss is highly beneficial, particularly when limited full annotated data is available.
This could be explained by the fact that the network is already trained properly when a large fully
annotated training set is available, which is in line with the values reported in Table 2.2. Similar find-
ings were reported in [71, 72], where authors exhibited an increased of performance when including
non-annotated images in a semi-supervised setting. This suggests that including more unlabelled or
weakly labelled data can potentially lead to significantly improvements in performance.

Findings from experiments across different segmentation tasks indicate that highly competitive
performance can be obtained with a rough estimation of the target size. This is especially the case
on well structured problems where the size and/or shape of the object remains consistent across
subjects. If more precise size bounds are provided, the proposed approach is able to reach perfor-
mances close to full supervision, even when the size and shape variability across subjects is large. For
difficult tasks, where the gap between our approach and full supervision is larger, such as prostate
segmentation, including an unsupervised regularization loss [31, 32] to encourage pairwise consis-
tencies between pixels may boost the performance of the proposed strategy. A noteworthy point is
the robustness of our method to the weak-label generation. While the weak labels were generated
from a ground-truth erosion for the first dataset, with seeds always in the center of the target re-
gion, they were randomly generated and placed for the other two datasets. Thus, the results showed
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consistency in the behaviour of the different methods, regardless of the strategy used.

Even though the proposed method has been shown to provide good generalization capabilities
across three different applications, the segmentation of images with severe abnormalities, whose
sizes largely differ from those seen in the training set, has not been assessed. Nevertheless, the ab-
lation study performed on the values of the size bounds, and the results obtained with common
bound sizes suggest that the proposed approach may perform satisfactorily in the presence of these
severe abnormalities, by simply increasing the upper bound value. In addition, if a greater ‘precise’
estimation of the abnormality size is given, our proposed loss may improve segmentation perfor-
mance, as demonstrated by the results achieved by the individual bounds strategy. It is important
to note that, even in the case of full supervision, if a new testing image contains a severe abnormal-
ity much larger than the objects seen during the training phase, the network will likely to poorly
segment the region of interest.

Our framework can be easily extended to other non-linear (fractional) constraints, e.g., invariant
shape moments [19] or other statistics such as the mean of intensities within the target regions
[20]. For instance, a normalized (scale invariant) shape moment of a target region can be directly
expressed in term of network outputs using the following general fractional form:

FS =

∑
p∈Ω fpSp∑
p∈Ω Sp

(2.8)

where fp is a unary potential expressed in term of exponents of pixel/voxel coordinates. For ex-
ample, the coordinates of the center of mass of the target region are particular cases of (2.8) and
correspond to first-order scale-invariant shape moments. In this case, potentials fp correspond to
pixel coordinates. Now, assume a weak-supervision scenario in which we have a rough localization
of the centroid of the target region. In this case, instead of a constraint on size representation VS
as in Eq. (2.3), one can use a cue on centroid as follows: a ≤ FS ≤ b. This can be embedded as
a direct loss using differentiable penalty C(FS). Of course, here, FS is a non-linear fractional term
unlike region size. Therefore, in future work, it would be interesting to examine the behaviour of
such fractional terms for constraining deep CNNs with a penalty approach. Finally, it is worth
noting that the general form in Eq. (2.8) is not confined to shape moments. For instance, the image
(intensity) statistics within the target region, such as the mean8, follow the same general form in
(2.8). Therefore, a similar approach could be used in cases where we have prior knowledge on such
image statistics.

Our direct penalty-based approach for inequality constraints yields a considerable increase in
performance with respect to to Lagrangian-dual optimization [3], while being faster and more sta-
ble. We hypothesize that this is due, in part, to the interplay between stochastic optimization (e.g.,
stochastic gradient descent) for the primal and the iterates/projections for the Lagrangian dual9.

8Notice that the mean of intensity within the target region can be represented with network output using general
form (2.8), with fp corresponding to the intensity of pixel p

9In fact, a similar hypothesis was made in [39] to explain the negative results of Lagrangian optimization in the case
of equality constraints.
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Such dual iterates/projections are basic (non-stochastic) gradient methods for handling the con-
straints. Basic gradient methods have well-known issues with deep networks, e.g., they are sensi-
tive to the learning rate and prone to weak local minima. Therefore, the dual part in Lagrangian
optimization might obstruct the practical and theoretical benefits of stochastic optimization (e.g.,
speed and strong generalization performance), which are widely established for unconstrained deep
network losses [38]. Our penalty-based approach transforms a constrained problem into an uncon-
strained loss, thereby handling the constraints fully within stochastic optimization and avoiding
completely the dual steps. While penalty-based approaches do not guarantee constraint satisfaction,
our work showed that they can be extremely useful in the context of constrained CNN segmenta-
tion.

2.7 Conclusion

In this paper, a novel loss function is present for weakly supervised image segmentation, which,
despite its simplicity, performs significantly better than Lagrangian optimization for this task. We
achieve results close to full supervision by annotating only a small fraction of the pixels, across
three different tasks, and with negligible computation overhead. While our experiments focused on
basic linear constraints such as the target-region size and image tags, our direct constrained-CNN
loss can be easily extended to other non-linear constraints, e.g., invariant shape moments [19] or
other region statistics [20]. Therefore, it has the potential to close the gap between weakly and fully
supervised learning in semantic medical image segmentation.
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Abstract

This study investigates the optimization aspects of imposing hard inequality constraints
on the outputs of CNNs. In the context of deep networks, constraints are commonly han-
dled with penalties for their simplicity, and despite their well-known limitations. Lagrangian-
dual optimization has been largely avoided, except for a few recent works, mainly due to the
computational complexity and stability/convergence issues caused by alternating explicit dual
updates/projections and stochastic optimization. Several studies showed that, surprisingly for
deep CNNs, the theoretical and practical advantages of Lagrangian optimization over penal-
ties do not materialize in practice. We propose log-barrier extensions, which approximate La-
grangian optimization of constrained-CNN problems with a sequence of unconstrained losses.
Unlike standard interior-point and log-barrier methods, our formulation does not need an ini-
tial feasible solution. Furthermore, we provide a new technical result, which shows that the
proposed extensions yield an upper bound on the duality gap. This generalizes the duality-gap
result of standard log-barriers, yielding sub-optimality certificates for feasible solutions. While
sub-optimality is not guaranteed for non-convex problems, our result shows that log-barrier ex-
tensions are a principled way to approximate Lagrangian optimization for constrained CNNs
via implicit dual variables. We report comprehensive weakly supervised segmentation experi-
ments, with various constraints, showing that our formulation outperforms substantially the
existing constrained-CNNmethods, both in terms of accuracy, constraint satisfaction and train-
ing stability, more so when dealing with a large number of constraints.

47
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3.1 Introduction

D
eep convolutional neural networks (CNNs) are dominating inmost visual recog-
nition problems and applications, including semantic segmentation, action recognition,
object detection and pose estimation, among many others. In a standard setting, CNNs
are trained with abundant labeled data without any additional prior knowledge about

the task (apart from model architecture and loss). However, in a breadth of learning problems, for
example, semi- and weakly-supervised learning, structured prediction or multi-task learning, a set of
natural prior-knowledge constraints is available. Such additional knowledge can come, for example,
from domain experts.

In the semi-supervised setting, for instance, several recent works [73, 2, 74] showed that im-
posing domain-specific knowledge on the network’s predictions at unlableled data points acts as a
powerful regularizer, boosting significantly the performances when the amount of labeled data is
limited. For instance, the recent semi-supervised semantic segmentation works in [73, 74] added
priors on the sizes of the target regions, achieving good performances with only fractions of full-
supervision labels. Such prior-knowledge constraints are highly relevant in medical imaging [42],
and canmitigate the lack of full annotations1. Similar experimental observations were made in other
application areas of semi-supervised learning. For example, in natural language processing, the au-
thors of [2], among other recent studies, showed that embedding prior-knowledge constraints on
unlabled data can yield significant boosts in performances. 3D human pose estimation from a single
view [39] is another application example where task-specific prior constraints arise naturally, e.g.,
symmetry constraints encode the prior that the two arms should have the same length.

Imposing prior knowledge in the form of hard constraints on the output of modern deep CNNs
with large numbers of parameters is still in a nascent stage, despite its clear benefits and breadth of
applications. As discussed in several recent works [73, 39, 2, 3, 54, 74], there are several challenges
that arise from optimization perspectives, particularly when dealing with deep networks involving
millions of parameters.

3.1.1 General Constrained Formulation

Let D = {I1, ..., IN} denotes a partially labeled set of N training images, and Sθ = {s1θ, ..., sNθ }
denotes the associated predicted networks outputs in the form of softmax probabilities, for both
unlabeled and labeled data points, with θ the neural-network weights. These could be class prob-
abilities or dense pixel-wise probabilities in the case of semantic image segmentation. We address

1In semantic segmentation, for instance, full supervision involves annotating all the pixels in each training image, a
problem further amplified when such annotations require expert knowledge or involves volumetric data, as is the case in
medical imaging.
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constrained problems of the following general form:

min
θ

E(θ) (3.1)

s.t. f1(s
n
θ) ≤ 0, n = 1, . . . N

. . .

fP (s
n
θ) ≤ 0, n = 1, . . . N

where E(θ) is some standard loss over the set of labeled data points, e.g., cross-entropy, and fi are
a series of derivable function whose output we want to constraint for each data point n. Inequality
constraints of the general form in (3.1) can embed very useful prior knowledge on the network’s
predictions for unlabeled pixels. Assume, for instance, in the case of image segmentation, that we
have prior knowledge about the size of the target region (i.e., class) k. Such a knowledge can be in
the form of lower or upper bounds on region size, which is common in medical image segmentation
problems [50, 73, 49]. In this case, In : Ω ⊂ R2 → R could a partially labeled or unlabeled image,
with Ω the spatial support of the image, and snθ ∈ [0, 1]K×|Ω| is the predicted mask. This matrix
contains the softmax probabilities for each pixel p ∈ Ω and each class k, which we denotes snk,p,θ. A
constraint in the form of fi(snθ) =

∑
p∈Ω s

n
k,p,θ − a enforces an upper limit a on the size of target

region k. Such constraints could be also very useful for imposing tightness priors in the context of
box-based weakly supervised segmentation [75]. There exist many other application areas where
constraints arise naturally, including in natural language processing (NLP), where prior knowledge
on the language structure exists and could be incorporated into the training with constraints on
network softmax predictions [2].

3.1.2 Related Works and Challenges in Constrained CNN Optimization

As pointed out in several recent studies [73, 39, 2, 3, 54, 74], imposing hard constraints on deep
CNNs involving millions of trainable parameters is challenging. This is the case of problem (3.1),
even when the constraints are convex with respect to the outputs of the network. In optimization,
a standard way to handle constraints is to solve the Lagrangian primal and dual problems in an
alternating scheme [21]. For (3.1), this corresponds to alternating the optimization of a CNN for
the primal with stochastic optimization, e.g., SGD, and projected gradient-ascent iterates for the
dual. However, despite the clear benefits of imposing global constraints on CNNs, such a standard
Lagrangian-dual optimization is mostly avoided in modern deep networks. As discussed recently
in [39, 3, 54], this might be explained by the computational complexity and stability/convergence
issues caused by alternating between stochastic optimization and dual updates/projections.

In standard Lagrangian-dual optimization, an unconstrained problem needs to be solved after
each iterative dual step. This is not feasible for deep CNNs, however, as it would require re-training
the network at each step. To avoid this problem, Pathak et al. [3] introduced a latent distribution,
and minimized a KL divergence so that the CNN output matches this distribution as closely as
possible. Since the network’s output is not directly coupled with constraints, its parameters can
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be optimized using standard techniques like SGD. While this strategy enabled adding inequality
constraints in weakly supervised segmentation, it is limited to linear constraints. Moreover, the
work in [39] imposed hard equality constraints on 3D human pose estimation. To alleviate the
ensuing computational complexity, they used a Kyrlov sub-space approach, limiting the solver to
a randomly selected subset of constraints within each iteration. Therefore, constraints that are
satisfied at one iteration may not be satisfied at the next, which might explain the negative results
obtained in [39]. In general, updating the network parameters and dual variables in an alternating
fashion leads to a higher computational complexity than solving a loss function directly.

Another important difficulty in Lagrangian optimization is the interplay between stochastic
optimization (e.g., SGD) for the primal and the iterates/projections for the dual. Basic gradient
methods have well-known issues with deep networks, e.g., they are sensitive to the learning rate and
prone to weak local minima. Therefore, the dual part in Lagrangian optimization might obstruct
the practical and theoretical benefits of stochastic optimization (e.g., speed and strong generaliza-
tion performance), which are widely established for unconstrained deep network losses [38]. More
importantly, solving the primal and dual separately may lead to instability during training or slow
convergence, as shown recently in [73]. To alleviate the instability caused by the dual part in La-
grangian optimization, Nandwani et al. [2] introduced a ReLumodification of the Lagrangian term,
avoiding completely the projection steps for the dual variables.

Penalty approaches

In the context of deep networks, “hard” inequality or equality constraints are typically handled in a
“soft” manner by augmenting the loss with a penalty function [76, 53, 73]. Such a penalty approach
is a simple alternative to Lagrangian optimization, and is well-known in the general context of con-
strained optimization; see [77], Chapter 4. In general, penalty-based methods approximate a con-
strained minimization problem with an unconstrained one by adding a term (penalty) P(fi(sθ)),
which increases when constraint fi(sθ) ≤ 0 is violated. By definition, a penalty P is a non-negative,
continuous and differentiable function, which verifies: P(fi(sθ)) = 0 if and only if constraint
fi(sθ) ≤ 0 is satisfied. In semantic segmentation [73] and, more generally, in deep learning [76], it
is common to use a quadratic penalty for imposing an inequality constraint: P(fi(sθ)) = [fi(sθ)]

2
+,

where [x]+ = max(0, x) denotes the rectifier function. Penalties are convenient for deep networks
because they remove the requirement for explicit Lagrangian-dual optimization. The inequality
constraints are fully handled within stochastic optimization, as in standard unconstrained losses,
avoiding gradient ascent iterates/projections over the dual variables and reducing the computational
load for training [73]. However, this simplicity of penalty methods comes at a price. In fact, it is
well known that penalties do not guarantee constraint satisfaction and require careful and ad hoc
tuning of the relative importance (or weight) of each penalty term in the overall function. More
importantly, in the case of several competing constraints, penalties do not act as barriers at the
boundary of the feasible set (i.e., a satisfied constraint yields a null penalty and null gradient). As a
result, a subset of constraints that are satisfied at one iteration may not be satisfied at the next. Take
the case of two competing constraints f1 and f2 at the current iteration (assuming gradient-descent
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optimization), and suppose that f1 is satisfied but f2 is not. The gradient of a penalty P w.r.t the
term of satisfied constraint f1 is null, and the the penalty approach will focus solely on satisfying f2.
Therefore, due to a null gradient, there is nothing that prevents satisfied constraint f1 from being
violated. This could lead to oscillations between competing constraints during iterations, making
the training unstable (we will give examples in the experiments).

Lagrangian approaches

Standard Lagrangian-dual optimization Let us first examine standard Lagrangian optimization
for problem (3.1):

max
λ

min
θ

L(Sθ,λ) = E(θ) +
P∑
i=1

N∑
n=1

λni fi(s
n
θ) (3.2)

s.t. λ � 0

where λ ∈ RP×N
+ is the dual variable (or Lagrange-multiplier) vector, with λni the multiplier associ-

ated with constraint fi(snθ) ≤ 0. The dual function is the minimum value of Lagrangian (3.2) over
θ: g(λ) = minθ L(Sθ,λ). A standard Lagrangian would alternatively optimize w.r.t the network
parameters θ and dual variable λ.

Lagrangian optimization can deal with the difficulties of penalty methods, and has several well-
known theoretical and practical advantages over penalty methods [36, 37]: it finds automatically the
optimal weights of the constraints, acts as a barrier for satisfied constraints and guarantees constraint
satisfaction when feasible solutions exist. Unfortunately, as pointed out recently in [73, 39], these
advantages of Lagrangian optimization do not materialize in practice in the context of deep CNNs.
Apart from the computational-feasibility aspects, which the recent works in [39, 3] address to some
extent with approximations, the performances of Lagrangian optimization are, surprisingly, below
those obtained with simple, much less computationally intensive penalties [73, 39]. This is, for
instance, the case of the recent weakly supervised CNN semantic segmentation results in [73],
which showed that a simple quadratic-penalty formulation of inequality constraints outperforms
substantially the Lagrangian method in [3]. Also, the authors of [39] reported surprising results
in the context of 3D human pose estimation. In their case, replacing the equality constraints with
simple quadratic penalties yielded better results than Lagrangian optimization.

ReLU Lagrangian modification [2] One of the main problems of the standard Lagrangian-dual
optimization in deep CNNs is its instability due, in part to dual variables λni , which could remain
positive while the constrained function fi is satisfied (fi(snθ) ≤ 0). Because of this, the SGD on θ
keeps minimizing the constrained term, although no modification should be made anymore. Nand-
wani et al. [2] devised a trick to alleviate this problem, by putting the constrained function into a
rectified linear unit first. They also regroup the constraints by function fi, sharing the same λi for
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all samples of dataset D2:

max
λ

min
θ

L(Sθ,λ) = E(θ) +
P∑
i=1

λi

N∑
n=1

max(0, fi(s
n
θ)). (3.3)

Since the gradient ∇λ is always positive, λ can only increase over time.

Lagrangian with proposals [3] This is another approach, introduced by Pathak et al., to deal
with the limitations of standard Lagrangian with deep neural networks, in the context of weakly
supervised image segmentation [3]. We want the softmax probabilities snθ to match as closely as
possible some binary labels yn ∈ {0, 1}K×|Ω| such as

∑
k y

n
k,p = 1 ∀p ∈ Ω. Their first insight was to

rewrite yn as a continuous variable (∈ [0, 1]K×|Ω|), and to introduce a latent variable ỹn ∈ [0, 1]K×|Ω|

on which they imposed linear constraints:

min
ỹ,θ

∑
n

KL(ỹn||snθ) (3.4)

s.t. ỹn⊤a1 − b1 � 0 ∀n ∈ D,
...

ỹn⊤aP − bP � 0 ∀n ∈ D,
1⊤ỹnp = 1 ∀n ∈ D, ∀p ∈ |Ω|,

where a1, ..., aP ∈ R|Ω| and b1, ..., bP ∈ RK . The corresponding Lagrangian is:

max
λ,ν

min
ỹ,θ

∑
n

KL(ỹn||snθ) + P∑
i=1

λni (ỹ
n⊤ai − bi) +

∑
p∈Ω

νnp (1
⊤ỹnp − 1)

 (3.5)

s.t. λ � 0,

where λ ∈ RP×|D|
+ and ν ∈ R|D|×|Ω| are the Lagrangian dual variables. Minimizing ỹ, for con-

stant θ,λ,ν, can be solved analytically. Updating λ and ν requires to perform a projected gradient
ascent3. [3] concluded that is was best to perform this at each minibatch, for the corresponding sam-
ples. While limited to linear functions, it could in theory be extended to any function fi. However,
minimizing ỹ would not be analytically solvable anymore, and would probably requires a dedicated
stochastic gradient descent.

3.1.3 Contributions

Interior-point and log-barrier methods can approximate Lagrangian optimization by starting from
a feasible solution and solving unconstrained problems, while completely avoiding explicit dual

2This, we argue that this is unwarranted and may introduce several problems, as we explain in great details in our
supplemental material A.3.

3We detail the whole algorithm and equations in the Supplemental material A.4.
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steps and projections. Unfortunately, despite their well-established advantages over penalties, such
standard log-barriers were not used before in deep CNNs because finding a feasible set of initial net-
work parameters is not trivial, and is itself a challenging constrained-CNN problem. We propose
log-barrier extensions, which approximate Lagrangian optimization of constrained-CNN problems
with a sequence of unconstrained losses, without the need for an initial feasible set of network
parameters. Furthermore, we provide a new theoretical result, which shows that the proposed ex-
tensions yield a duality-gap bound. This generalizes the standard duality-gap result of log-barriers,
yielding sub-optimality certificates for feasible solutions in the case of convex losses. While sub-
optimality is not guaranteed for non-convex problems, our result shows that log-barrier extensions
are a principled way to approximate Lagrangian optimization for constrained CNNs via implicit
dual variables. Our approach addresses the well-known limitations of penalty methods and, at the
same time, removes the explicit dual updates of Lagrangian optimization. We report comprehensive
weakly supervised segmentation experiments, with various constraints, showing that our formula-
tion outperforms substantially the existing constrained-CNN methods, both in terms of accuracy,
constraint satisfaction and training stability, more so when dealing with a large number of con-
straints.

3.2 Background on Duality and the Standard Log-barrier

This section reviews both standard Lagrangian-dual optimization and the log-barrier method for
constrained problems [21]. We also present basic concepts of duality theory, namely the duality gap
and ϵ-suboptimality, which will be needed when introducing our log-barrier extension and the cor-
responding duality-gap bound. We also discuss the limitations of standard constrained optimization
methods in the context of deep CNNs.

Let us consider again the Lagrangian-dual problem in Eq. (3.2). A dual feasible λ ≥ 0 yields a
lower bound on the optimal value of constrained problem (3.1), which we denote E∗: g(λ) ≤ E∗.
This important inequality can be easily verified, even when the problem (3.1) is not convex; see
[21], p. 216. It follows that a dual feasible λ gives a sub-optimality certificate for a given feasible
point θ, without knowing the exact value of E∗: E(θ)− E∗ ≤ E(θ)− g(λ). Nonnegative quantity
E(θ) − g(λ) is the duality gap for primal-dual pair (θ,λ). If we manage to find a feasible primal-
dual pair (θ,λ) such that the duality gap is less or equal than a certain ϵ, then primal feasible θ is
ϵ-suboptimal.

Definition 1. A primal feasible point θ is ϵ-suboptimal when it verifies: E(θ)− E∗ ≤ ϵ.

This provides a non-heuristic stopping criterion for Lagrangian optimization, which alternates
two iterative steps, one primal and one dual, each decreasing the duality gap until a given accuracy ϵ
is attained4. In the context of CNNs [3], the primal step minimizes the Lagrangian w.r.t. θ, which

4Strong duality should hold if we want to achieve arbitrarily small tolerance ϵ. Of course, strong duality does not
hold in the case of CNNs as the primal problem is not convex.
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corresponds to training a deep network with stochastic optimization, e.g., SGD: argminθ L(Sθ,λ).
The dual step is a constrained maximization of the dual function5 via projected gradient ascent:
maxλ g(λ) s.t λ ≥ 0. As mentioned before, direct use of Lagrangian optimization for deep CNNs
increases computational complexity and can lead to instability or poor convergence due to the in-
terplay between stochastic optimization for the primal and the iterates/projections for the dual.
Our work approximates Lagrangian-dual optimizationwith a sequence of unconstrained log-barrier-
extension losses, in which the dual variables are implicit, avoiding explicit dual iterates/projections.
Let us first review the standard log-barrier method.

The standard log-barrier

The log-barrier method is widely used for inequality-constrained optimization, and belongs to the
family of interior-point techniques [21]. To solve our constrained CNN problem (3.1) with this
method, we need to find a strictly feasible set of network parameters θ as a starting point, which
can then be used in an unconstrained problem via the standard log-barrier function. In the general
context of optimization, log-barrier methods proceed in two steps. The first, often called phase I
[21], computes a feasible point by Lagrangian minimization of a constrained problem, which in the
case of (3.1) is:

min
x,θ

x (3.6)

s.t. fi(s
n
θ) ≤ x ∀i ∈ {1, . . . , P}, ∀n ∈ D

For deep CNNs with millions of parameters, Lagrangian optimization of problem (3.6) has the
same difficulties as with the initial constrained problem in (3.1). To find a feasible set of network
parameters, one needs to alternate CNN training and projected gradient ascent for the dual vari-
ables. This might explain why such interior-point methods, despite their substantial impact in op-
timization [21], are mostly overlooked in modern deep networks6, as is generally the case for other
Lagrangian-dual optimization methods.

The second step, often referred to as phase II, approximates (3.1) as an unconstrained problem:

min
θ

E(θ) +
P∑
i=1

N∑
n=1

ψt (fi(s
n
θ)) (3.7)

where ψt is the log-barrier function: ψt(z) = −1
t log(−z). When t→ +∞, this convex, continuous

and twice-differentiable function approaches a hard indicator for the constraints: H(z) = 0 if z ≤ 0
and+∞ otherwise. The domain of the function is the set of feasible points. The higher t, the better
the quality of the approximation. This suggest that large t yields a good approximation of the initial

5Notice that the dual function is always concave as it is the minimum of a family of affine functions, even when the
original (or primal) problem is not convex, as is the case for CNNs.

6Interior-point methods were investigated for artificial neural networks before the deep learning era [78].
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constrained problem in (3.1). This is, indeed, confirmed with the following standard duality-gap
result for the log-barrier method [21], which shows that optimizing (3.7) yields a solution that is
PN/t-suboptimal.

Proposition 1. Let θ∗ be the feasible solution of unconstrained problem (3.7) and λ∗ ∈ RP×N , with
λ∗i,n = −1/(tfi(snθ)). Then, the duality gap associated with primal feasible θ∗ and dual feasible λ∗ for
the initial constrained problem in (3.1) is:

E(θ∗)− g(λ∗) = PN/t

Proof: The proof can be found in [21], p. 566.

An important implication that follows immediately from proposition (1) is that a feasible solu-
tion of approximation (3.7) is PN/t-suboptimal: E(θ∗)− E∗ ≤ PN/t. This suggests a simple way
for solving the initial constrained problem with a guaranteed ϵ-suboptimality: We simply choose
large t = PN/ϵ and solve unconstrained problem (3.7). However, for large t, the log-barrier func-
tion is difficult to minimize because its gradient varies rapidly near the boundary of the feasible
set. In practice, log-barrier methods solve a sequence of problems of the form (3.7) with an in-
creasing value t. The solution of a problem is used as a starting point for the next, until a specified
ϵ-suboptimality is reached.

3.3 Log-barrier Extensions

We propose the following unconstrained loss for approximating Lagrangian optimization of con-
strained problem (3.1):

min
θ

E(θ) +
P∑
i=1

N∑
n=1

ψ̃t (fi(s
n
θ)) (3.8)

where ψ̃t is our log-barrier extension, which is convex, continuous and twice-differentiable:

ψ̃t(z) =

{
−1

t log(−z) if z ≤ − 1
t2

tz − 1
t log(

1
t2
) + 1

t otherwise
(3.9)

Similarly to the standard log-barrier, when t → +∞, our extension (3.9) can be viewed a smooth
approximation of hard indicator function H . However, a very important difference is that the
domain of our extension ψ̃t is not restricted to feasible points θ. Therefore, our approximation (3.8)
removes completely the requirement for explicit Lagrangian-dual optimization for finding a feasible
set of network parameters. In our case, the inequality constraints are fully handled within stochastic
optimization, as in standard unconstrained losses, avoiding completely gradient ascent iterates and
projections over explicit dual variables. As we will see in the experiments, our formulation yields
better results in terms of accuracy and stability than the recent penalty constrained CNN method
in [73].
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In our approximation in (3.8), the Lagrangian dual variables for the initial inequality-constrained
problemof (3.1) are implicit. We prove the following duality-gap bound, which yields sub-optimality
certificates for feasible solutions of our approximation in (3.8). Our result7 can be viewed as an ex-
tension of the standard result in proposition 1, which expresses the duality-gap as a function of t for
the log-barrier function.

Proposition 2. Let θ∗ be the solution of problem (3.8) and λ∗ ∈ RP×N the corresponding vector of
implicit Lagrangian dual variables given by:

λ∗i,n =

{
− 1

tfi(snθ∗ )
if fi(snθ∗) ≤ − 1

t2

t otherwise
. (3.10)

Then, we have the following upper bound on the duality gap associated with primal θ∗ and implicit dual
feasible λ∗ for the initial inequality-constrained problem (3.1):

E(θ∗)− g(λ∗) ≤ PN/t

Proof: We give a detailed proof of Prop. 2 in the Supplemental material.

From proposition 2, the following important fact follows immediately: If the solution θ∗ that
we obtain from unconstrained problem (3.8) is feasible and global, then it is PN/t-suboptimal for
constrained problem (3.1): E(θ∗)− E∗ ≤ PN/t.

Finally, we arrive to our constrained CNN learning algorithm, which is fully based on SGD.
Similarly to the standard log-barrier algorithm, we use a varying parameter t. We optimize a se-
quence of losses of the form (3.8) and increase gradually the value t by a factor µ. The network
parameters obtained for the current t and epoch are used as a starting point for the next t and epoch.
We can summarize the fundamental differences between our log-barrier extension and a standard
penalty function as follows:

a) Apenalty does not act as a barrier near the boundary of the feasible set, i.e., a satisfied constraint
yields null penalty and gradient. Therefore, at a given gradient update, there is nothing that prevents
a satisfied constraint from being violated, causing oscillations between competing constraints and
making the training unstable. On the contrary, the strictly positive gradient of our log-barrier
extension gets higher when a satisfied constraint approaches violation during optimization, pushing
it back towards the feasible set.

b) Another fundamental difference is that the derivatives of our log-barrier extensions yield the
implicit dual variables in Eq. (3.10), with sub-optimality and duality-gap guarantees, which is not
the case for penalties. Therefore, our log-barrier extension mimics Lagrangian optimization, but
with implicit rather than explicit dual variables. The detailed proof of Prop. 2 in the Supplemental
material clarifies how the λ∗i,n’s in Eq. (3.10) can be viewed as implicit dual variables.

7Our result applies to the general context of convex optimization. In deep CNNs, of course, a feasible solution of our
approximation may not be unique and is not guaranteed to be a global optimum as E and the constraints are not convex.
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3.4 Experiments

Most of the existing methods8—and the proposed log-barrier – are compatible with any differen-
tiable function fi, including non-linear and fractional terms, as in Eqs. (3.11) and (3.12) introduced
further in the paper. However, we hypothesize that our log-barrier extension is better for handling
the interplay between multiple competing constraints. To validate this hypothesis, we compare all
strategies on the joint optimization of joint segmentation constraints related to region size and cen-
troid. We will test the Lagrangian with proposals from [3] when the experiments allows it, i.e.,
when the functions constrained are linear and the number of total constraints per image is not too
high9.

Region-size constraint We define the size (or volume) of a segmentation for class k as the sum of
its softmax predictions over the image domain:

Vnk,θ =
∑
p∈Ω

snk,p,θ (3.11)

We use the following inequality constraints on region size: 0.9τVn
k
≤ Vnk,θ ≤ 1.1τVn

k
, where, simi-

larly to the experiments in [73], τVn
k
=
∑

p∈Ω y
n
k,p is determined from the ground truth yn of each

image.

Region-centroid constraints The centroid of the predicted region can be computed as a weighted
average of the pixel coordinates:

Cnk,θ =

∑
p∈Ω s

n
k,p,θcp∑

p∈Ω s
n
k,p,θ

, (3.12)

where cp ∈ N2 are the pixel coordinates on a 2D grid. We constrain the position of the centroid
in a box around the ground-truth centroid: τCn

k
− 20 ≤ Cnk,θ ≤ τCn

k
+ 20, with τCn

k
=

∑
p∈Ω ynk,pcp∑
p∈Ω ynk,p

corresponding to the bound values associated with each image.

Bounding box tightness prior This prior [75, 79] assumes that any horizontal or vertical line
inside the bounding box of an object of class k will eventually cross the object. This can be gen-
eralized with segments of width w inside the box, that will cross at least w times the object. This
prior can be easily reformulated as constraints. If SnL := {snl } denotes the set of parallel segments
to the sides of the bounding box for sample n, the following set of inequality constraints is trivial

8The only and notable exception being [3].
9As their complexity is linear to the number of constraints, their method quickly becomes intolerably slow with high

number of constraints, making it not feasible to train a neural network in a timely fashion.
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to define: ∑
p∈snl

ynk,p ≥ w ∀snl ∈ SnL, ∀n ∈ D. (3.13)

If we define the inside of the bounding box as ΩF , and the outside as ΩB (such as Ω = ΩF ∪ ΩB

and ΩF ∩ ΩB = {∅}), we can define two other useful constraints for each image:∑
p∈ΩB

snk,p,θ ≤ 0 ∀n ∈ D, (3.14)

∑
p∈Ω

snk,p,θ ≤ |ΩF | ∀n ∈ D. (3.15)

There is some interplay between constraint (3.13) and constraint (3.14), as they have competing
trivial solutions: snk,p,θ = 1 ∀pwould satisfy constraint (3.13) perfectly, whereas snk,p,θ = 0 ∀pwould
satisfy (3.14). While constraint (3.15) is there to balance the two and limit the shift to extremes,
this setting remain a good benchmark to evaluate the interplay of multiple, competing constraints
simultaneously.

3.4.1 Datasets and Evaluation Metrics

Our evaluations and comparisons were performed on three different segmentation scenarios using
synthetic and medical images. The data sets used in each of these problems are detailed below.

Synthetic images We generated a synthetic dataset composed of 1100 images with two different
circles of the same size but different intensity values, where the darker circle is the target region
(Fig. 3.1, first column). Furthermore, different levels of Gaussian noise were added to the images.
We employed 1000 images for training and 100 for validation. The objective of this simple dataset
is to compare our log-barrier extension to other methods when several functions are constrained,
e.g., size and centroid. Imposing these constraints individually is not sufficient to learn which circle
is the target, since no pixel annotation is used during training. However, if the two constraints are
combined, it should be enough to identify the correct circle.

This setting will evaluate how different methods behave when there exist interplay between two
different constraints.

Medical images We use the dataset from the MICCAI 2012 prostate segmentation challenge [5].
This dataset contains Magnetic Resonance (MR) images from 50 patients, from which we employ
10 patients for validation and use the rest for training. We investigate two different settings on this
dataset. Setting I) we test the combinations of constraints (3.13), (3.14) and (3.15), with bounding
boxes derived from the ground truth. Setting II) we test the setting of [73], where weak labels
derived from the ground truth by placing random dots inside the object of interest (see Figure in
appendix A.2) and a region-size constraints in the form of (3.11) is imposed.
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Evaluation We resort to the common Dice index (DSC) = 2|S
∩

Y |
|S|+|Y | to evaluate the performance

of tested methods. Furthermore, we evaluate the effectiveness and stability of the constrained opti-
mization methods. To this end, we first compute at each epoch the percentage of constraints that
are satisfied. Second, we measure the stability of the constraints, i.e., the percentage of constraints
satisfied at epoch t that are still satisfied at epoch t+1. And last, we simply measure the time taken
to run a single epoch for each method, including the proposal generation of [3] and the λ update
for the Standard Lagrangian and the ReLU Lagrangian [2].

3.4.2 Training and implementation details

Since the two datasets have very different characteristics, we considered a specific network architec-
ture and training strategy for each of them.

For the dataset of synthetic images, we used the ENet network [68], as it has shown a good
trade-off between accuracy and inference time. The network was trained from scratch using the
Adam optimizer and a batch size of 1. The initial learning rate was set to 5× 10-4 and decreased by
half if validation performance did not improve for 20 epochs. Softmax temperature value was set
to 5. To segment the prostate, we used the same settings as in [73], reporting their results for the
penalty-based baselines.

For the standard and ReLU Lagrangian, we alternate between one epoch (one update for each
sample of the dataset) of SGD to optimize θ, then one epoch to update λ. We set to 5 the initial
t value of our extended log-barrier. We increased it by a factor of µ = 1.1 after each epoch. This
strategy relaxes constraints in the first epochs so that the network can focus on learning from images,
and then gradually makes these constraints harder as optimization progresses. All experiments were
implemented in Python 3.8 with PyTorch 1.4 [70]. All the experiments were carried out on a server
equipped with a NVIDIA Titan RTX. The code is publicly available10.

3.4.3 Results

Quantitative results Results in terms of DSC are reported in Table 3.1. The first thing we can
observe is that the standard Lagrangian, despite the introduction of a dedicated learning rate for its
λ update, is not able to learn when multiple constraints enter in competition, i.e, DSC of 0.005
in the synthetic example. In addition, the ReLU Lagrangian approach proposed by [2] can better
handle multiple constraints than a simple penalty [76, 73], but it performs similarly if only one
constraint is enforced, such as in the case of the size constraint on the PROMISE12 dataset. On the
other hand, with the high number of constraints and trivial solutions to balance, the proposed log-
barrier extension learns successfully based on the information given by the constraints, compared
to the other methods, achieving the best DSC across the three settings. The behavior of the ReLU
Lagrangian is very interesting, which highlights one of the drawbacks of the ReLU introduced in

10https://github.com/LIVIAETS/extended_logbarrier

https://github.com/LIVIAETS/extended_logbarrier
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their Lagrangian formulation. As λ can only increase—which happens when a constraint is not
satisfied—when trying to balance each constraint, all λ keep increasing, making the subtle balance
more and more difficult to achieve. For instance, the constraint (3.14) started with λ = 0 and after
200 epochs it had reached an average value of 350 million across the whole dataset (PROMISE12),
despite the introduction of a learning rate to slow down its increase. The lower performance of
penalty-based methods can be explained by the high-gradients generated when constraints are not
satisfied, which leads to big and simplistic updates.

Table 3.1: Mean DSC and standard deviation of the last 10 epochs on the validation on the toy
example and PROMISE12 datasets.

Method Synthetic dataset PROMISE12

Setting I Setting II

Lagrangian proposal [3] NA NA 0.740 (0.018)
Standard Lagrangian 0.005 (0.014) 0.000 (0.000) 0.752 (0.007)
ReLU Lagrangian [2] 0.798 (0.006) 0.000 (0.000) 0.790 (0.007)
Penalty [76, 73] 0.712 (0.022) 0.000 (0.000) 0.817 (0.006)
Log-barrier extensions (ours) 0.945 (0.001) 0.813 (0.024) 0.823 (0.003)
Full supervision 0.998 (0.000) 0.880 (0.001)

Qualitative results A visual comparison of the predicted results on the toy example is depicted
in Figure 3.1. In this figure we can first observe that standard Lagrangian generates noisy segmen-
tations, which is in line with the quantitative results reported in Table 3.1. Both ReLU Lagrangian
[2] and penalty-based methods obtain better target segmentations. Nevertheless, as observed in the
case of penalties, they cannot handle efficiently the interplay between multiple constraints. While
the size constraint is apparently satisfied, the centroid constraint is not properly enforced (e.g., the
non-target circle contains segmented regions). Last, the proposed extended log-barrier demonstrates
a strong ability to handle several constraints simultaneously, which is reflected in the circle segmen-
tation close to the ground truth.

Figure 3.1: Results on the synthetic dataset (background in red and foreground in green).
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Constraints satisfaction and stability We further evaluated our method in terms of how the
constraints are satisfied across epochs and the stability during training, whose results are shown in
Fig. 3.2. We can first notice that on top of the better absolute performances, the proposed log-barrier
extension is also more stable during training, both in performance and constraints satisfaction. The
gap between the proposed approach and prior work is more significant on the synthetic dataset,
where multiple constraints are enforced simultaneously. Other methods that perform satisfactorily
in terms ofDSCmetric, i.e., quadratic penalty or ReLULagrangian, tend to present a higher variance
across epochs when the constraints satisfaction and stability is evaluated. This indicates that our
method not only achieves the best segmentation performance, but also satisfies the constraints better
than known approaches.

Figure 3.2: Constraints satisfaction, stability and DSC evolution on different settings.

Computational cost and efficiency Penalties and the proposed log-barrier extension have negli-
gible cost compared to optimizing the base-loss E(θ) alone (up to 5% slowdown when the number
of constraints becomes very high). In contrast, Lagrangian methods incur in higher computational
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cost. For example, in the standard and ReLULagrangian, it amounts to nearly a 25% slowdown (due
to the extra loop over the training set to perform the λ update). The Lagrangian with proposals in
[3] is much slower (about three times slower in the studied setting).

3.5 Conclusion

We proposed log-barrier extensions, which approximate Lagrangian optimization of constrained-
CNN problems with a sequence of unconstrained losses. Our formulation relaxes the need for
an initial feasible solution, unlike standard interior-point and log-barrier methods. This makes it
convenient for deep networks. We also provided an upper bound on the duality gap for our proposed
extensions, thereby generalizing the duality-gap result of standard log-barriers and showing that our
formulation has dual variables that mimic implicitly (without dual projections/steps) Lagrangian
optimization. Therefore, our implicit Lagrangian formulation can be fully handled with SGD, the
workhorse of deep networks. We reported comprehensive constrained-CNN experiments, showing
that log-barrier extensions outperform several other types of Lagrangian methods and penalties, in
terms of accuracy and training stability.

While we evaluated our approach in the context of weakly supervised segmentation, log-barrier
extensions can be useful in breadth of problems in vision and learning, where constraints occur
naturally. This include, for instance, adversarial robustness [80], stabilizing the training of GANs
[81], domain adaptation for segmentation [82], pose-constrained image generation [83], 3D human
pose estimation [39], deep reinforcement learning [76] and natural language processing [2]. To
our knowledge, constraints (either equality11 or inequality) in these problems, among others in the
context of deep networks, are typically handled with basic penalties. Therefore, it will be interesting
to investigate log-barrier extensions in these diverse contexts.

11Note that our framework can also be used for equality constraints as one can transform an equality constraint into
two inequality constraints.
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Abstract

Widely used loss functions for CNN segmentation, e.g., Dice or cross-entropy, are based
on integrals over the segmentation regions. Unfortunately, for highly unbalanced segmenta-
tions, such regional summations have values that differ by several orders of magnitude across
classes, which affects training performance and stability. We propose a boundary loss, which
takes the form of a distance metric on the space of contours, not regions. This can mitigate the
difficulties of highly unbalanced problems because it uses integrals over the interface between
regions instead of unbalanced integrals over the regions. Furthermore, a boundary loss comple-
ments regional information. Inspired by graph-based optimization techniques for computing
active-contour flows, we express a non-symmetric L2 distance on the space of contours as a
regional integral, which avoids completely local differential computations involving contour
points. This yields a boundary loss expressed with the regional softmax probability outputs of
the network, which can be easily combined with standard regional losses and implemented with
any existing deep network architecture for N-D segmentation. We report comprehensive eval-
uations and comparisons on different unbalanced problems, showing that our boundary loss
can yield significant increases in performances while improving training stability. Our code is
publicly available.
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4.1 Introduction

R
ecent years have witnessed a substantial growth in the number of deep learningmeth-
ods for medical image segmentation [42, 84, 41, 85]. Widely used loss functions for
segmentation, e.g., Dice or cross-entropy, are based on regional integrals, which are
convenient for training deep neural networks. In practice, these regional integrals are

summations over the segmentation regions of differentiable functions, each directly invoking the
softmax probability outputs of the network. Therefore, standard stochastic optimizers such as SGD
are directly applicable. Unfortunately, difficulties occur for highly unbalanced segmentations, for
instance, when the size of target foreground region is several orders of magnitude less than the
background size. For example, in the characterization of white matter hyperintensities (WMH)
of presumed vascular origin, the foreground composed of WMH regions may be 500 times smaller
than the background (see the typical example in Fig. 4.1). In such cases, quite common in medical
image analysis, standard regional losses contain foreground and background terms with values that
differ considerably, typically by several orders of magnitude, potentially affecting performance and
training stability [24, 23].

Segmentation approaches based on convolutional neural networks (CNN) are typically trained
by minimizing the cross-entropy (CE), which measures an affinity between the regions defined by
probability softmax outputs of the network and the corresponding ground-truth regions. The stan-
dard regional CE has well-known drawbacks in the context of highly unbalanced problems. It
assumes identical importance distribution of all the samples and classes. To achieve good gener-
alization, it requires a large training set with balanced classes. For unbalanced data, CE typically
results in unstable training and leads to decision boundaries biased towards the majority classes.
Class-imbalanced learning aims to mitigate learning bias by promoting the importance of infrequent
labels. In medical image segmentation, a common strategy is to re-balance class prior distributions
by down-sampling frequent labels [86, 87]. Nevertheless, this strategy limits the information of
the images used for training. Another common practice is to assign weights to the different classes
that are inversely proportional to the frequency of the corresponding labels [88, 17, 89, 15, 90]. In
this scenario, the standard cross-entropy (CE) loss is modified so as to assign more importance to
the rare labels. Although effective for some unbalanced problems, such weighting methods may
undergo serious difficulties when dealing with highly unbalanced datasets, as seen with WMH seg-
mentation. The CE gradient computed over the few pixels of infrequent labels is typically noisy,
and amplifying this noise with a high class weight may lead to instability.

The well-known Dice overlap coefficient was also adopted as a regional loss function, typically
outperforming CE in unbalanced medical image segmentation problems [24, 91, 92]. Sudre et al.
[23] generalized the Dice loss [24] by weighting according to the squared inverse of class-label fre-
quency. Despite these improvements over CE [24, 23], regional Dice losses may encounter diffi-
culties when dealing with very small structures. In such highly unbalanced scenarios, mis-classified
pixels may lead to large decreases of the loss, resulting in unstable optimization. Furthermore, Dice
corresponds to the harmonic mean between precision and recall, implicitly using the arithmetic
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(a) Ground truth (b) GDL (c) GDL + boundary loss

Figure 4.1: A visual comparison that shows the positive effect of our boundary loss on a validation
data from theWMHdataset. Our boundary loss helped to recover small regions that were otherwise
missed by the model trained with the generalized Dice loss (GDL). Best viewed in colors.

mean of false positives and false negatives. False positives and false negatives are, therefore, equally
important when the true positives remain the same, making this loss mainly appropriate when
both types of errors are equally high. The recent research in [93, 94] investigated losses based on
the Tversky similarity index in order to provide a better trade-off between precision and recall. It
introduced two parameters that control the importance of false positives and false negatives. Other
recent advances in class-imbalanced learning for computer vision problems have been adopted in
medical image segmentation. For example, inspired by the concept of focal loss [95], Dice and
Tvserky losses have been extended to integrate a focal term, which is parameterized by a value that
controls the importance of easy and hard training samples [94, 92]. Furthermore, the combination
of several of these regional losses has been further investigated [96]. The main objective of these
losses is to balance the classes not only in terms of their relative class sizes, but also by the level of
segmentation difficulty.

More recently, Karimi et al. [97] proposed a novel loss function that attempts to directly reduce
the Hausdorff distance (HD). This relaxed loss based on the HD is shown to bring improvements
when combined with the DSC loss. Nevertheless, its main drawback is the high computational cost
of computing the distance transforms. Particularly, at each training epoch, the new distance maps
have to be recomputed for all the images, which incurs in a computationally costly process. This
issue is further magnified in the case of 3D volumes, which heavily increases the computational
burden.

4.1.1 Contributions

In this paper, we propose a boundary loss that takes the form of a distance metric on the space of
contours (or shapes), not regions. We argue that a boundary loss can mitigate the issues related to re-
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gional losses in highly unbalanced segmentation problems. Rather than using unbalanced integrals
over the regions, a boundary loss uses integrals over the boundary (interface) between the regions.
Furthermore, it provides information that is complementary to regional losses. It is, however, chal-
lenging to represent the boundary points corresponding to the regional softmax outputs of a CNN.
This difficulty may explain why boundary losses have been avoided in the context of deep segmenta-
tion networks. Our boundary loss is inspired by techniques in discrete graph-based optimization for
computing gradient flows of curve evolution [98]. Following an integral approach for computing
boundary variations, we express a non-symmetric L2 distance on the space of shapes (or contours)
as a regional integral, which avoids completely local differential computations involving contour
points. This yields a boundary loss expressed as the sum of linear functions of the regional softmax
probability outputs of the network. Therefore, it can be easily combined with standard regional
losses and implemented with any existing deep network architecture for N-D segmentation.

We evaluated our boundary loss in conjunction with various region-based losses on two chal-
lenging and highly unbalanced segmentation problems—the Ischemic Stroke Lesion (ISLES) and the
White Matter Hyperintensities (WMH) benchmark datasets. The results indicate that the proposed
boundary loss yields a more stable learning process, and can bring significant gains in performances,
in terms of Dice and Hausdorff scores.

4.2 Formulation

Let I : Ω ⊂ R2,3 → R denotes a training image with spatial domain Ω, and g : Ω → {0, 1}
a binary ground-truth segmentation of the image: g(p) = 1 if pixel/voxel p belongs to the tar-
get region G ⊂ Ω (foreground region) and 0 otherwise, i.e., p ∈ Ω \ G (background region)1. Let
sθ : Ω→ [0, 1] denotes the softmax probability output of a deep segmentation network, and Sθ ⊂ Ω
the corresponding segmentation region: Sθ = {p ∈ Ω | sθ(p) ≥ δ} for some threshold δ. Widely
used segmentation loss functions involve a regional integral for each segmentation region inΩ, which
measures some similarity (or overlap) between the region defined by the probability outputs of the
network and the corresponding ground-truth. In the two-region case, we have an integral of the gen-
eral form

∫
Ω g(p)f(sθ(p))dp for the foreground, and of the form

∫
Ω(1−g(p))f(1−sθ(p))dp for the

background. For instance, the standard two-region cross-entropy loss corresponds to a summation
of these two terms for f = − log(·). Similarly, the generalized Dice loss (GDL) [23] involves re-
gional integrals with f = 1, subject to some normalization, and is given as follows for the two-region
case:

LGDL(θ) = 1− 2
wG

∫
p∈Ω g(p)sθ(p)dp+ wB

∫
p∈Ω(1− g(p))(1− sθ(p))dp

wG

∫
Ω[sθ(p) + g(p)]dp+ wB

∫
Ω[2− sθ(p)− g(p)]dp

(4.1)

where coefficients wG = 1/
(∫

p∈Ω g(p)dp
)2

and wB = 1/
(∫

Ω(1− g(p))dp
)2 are introduced to

reduce the well-known correlation between the Dice overlap and region size.
1We focus on two-region segmentation to simplify the presentation. However, our formulation extends to the multi-

region case in a straightforward manner.
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(a) Differential (b) Integral

Figure 4.2: The relationship between differential and integral approaches for evaluating boundary
change (variation).

Regional integrals are widely used because they are convenient for training deep segmentation
networks. In practice, these regional integrals are summations of differentiable functions, each in-
voking directly the softmax probability outputs of the network, sθ(p). Therefore, standard stochas-
tic optimizers such SGD are directly applicable. Unfortunately, extremely unbalanced segmenta-
tions are quite common in medical image analysis, where, e.g., the size of the target foreground
region is several orders of magnitude smaller than the background size. This represents challeng-
ing cases because the foreground and background terms have substantial differences in their values,
which affects segmentation performance and training stability [24, 23].

Our purpose is to build a boundary loss Dist(∂G, ∂Sθ), which takes the form of a distance
metric on the space of contours (or region boundaries) in Ω, with ∂G denoting a representation of
the boundary of ground-truth region G (e.g., the set of points of G, which have a spatial neighbor
in background Ω \ G) and ∂Sθ denoting the boundary of the segmentation region defined by the
network output. On the one hand, a boundary loss should be able to mitigate the above-mentioned
difficulties for unbalanced segmentations: rather than using unbalanced integrals within the regions,
it uses integrals over the boundary (interface) between the regions. Furthermore, a boundary loss
provides information that is different from and, therefore, complimentary to regional losses. On the
other hand, it is not clear how to represent boundary points on ∂Sθ as a differentiable function of
regional network outputs sθ. This difficulty might explain why boundary losses have been mostly
avoided in the context of deep segmentation networks.

Our boundary loss is inspired from discrete (graph-based) optimization techniques for com-
puting gradient flows of curve evolution [98]. Similarly to our problem, curve evolution methods
require a measure for evaluating boundary changes (or variations). Consider the following non-
symmetric L2 distance on the space of shapes, which evaluates the change between two nearby
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boundaries ∂S and ∂G [98]:

Dist(∂G, ∂S) =
∫
∂G
‖y∂S(p)− p‖2dp (4.2)

where p ∈ Ω is a point on boundary ∂G and y∂S(p) denotes the corresponding point on bound-
ary ∂S, along the direction normal to ∂G, i.e., y∂S(p) is the intersection of ∂S and the line that is
normal to ∂G at p (See Fig. 4.2.a for an illustration) ‖.‖ denotes the L2 norm. In fact, this differen-
tial framework for evaluating boundary change is in line with standard variational curve evolution
methods [99], which compute the motion of each point p on the evolving curve as a velocity along
the normal to the curve at point p. Similarly to any contour distance invoking directly points on
contour ∂S, expression (4.2) cannot be used directly as a loss for ∂S = ∂Sθ. However, it is easy
to show that the differential boundary variation in (4.2) can be approximated using an integral ap-
proach [98], which avoids completely local differential computations involving contour points and
represents boundary change as a regional integral:

Dist(∂G, ∂S) ≈ 2

∫
∆S

DG(q)dq (4.3)

where ∆S denotes the region between the two contours and DG : Ω → R+ is a distance map with
respect to boundary ∂G, i.e.,DG(q) evaluates the distance between point q ∈ Ω and the nearest point
z∂G(q) on contour ∂G: DG(q) = ‖q − z∂G(q)‖. Fig. 4.2.b illustrates this integral framework for
evaluating the boundary distance in Eq. (4.2). To clarify approximation (4.3), notice that integrating
the distance map 2DG(q) over the normal segment connecting a point p on ∂G and y∂S(p) yields
‖y∂S(p)− p‖2, via the following variable change:∫ y∂S(p)

p
2DG(q)dq =

∫ ∥y∂S(p)−p∥

0
2DGdDG = ‖y∂S(p)− p‖2

Thus, from approximation (4.3), the non-symmetric L2 distance between contours in Eq. (4.2) can
be expressed as a sum of regional integrals based on a level set representation of boundary ∂G:

1

2
Dist(∂G, ∂S) =

∫
S
ϕG(q)dq −

∫
G
ϕG(q)dq =

∫
Ω
ϕG(q)s(q)dq −

∫
Ω
ϕG(q)g(q)dq (4.4)

where s : Ω → {0, 1} is binary indicator function of region S: s(q) = 1 if q ∈ S belongs to
the target and 0 otherwise. ϕG : Ω → R denotes the level set representation of boundary ∂G:
ϕG(q) = −DG(q) if q ∈ G and ϕG(q) = DG(q) otherwise. Now, for S = Sθ, i.e., replacing binary
variables s(q) in Eq. (4.4) by the softmax probability outputs of the network sθ(q), we obtain the
following boundary loss which, up to a constant independent of θ, approximates boundary distance
Dist(∂G, ∂Sθ):

LB(θ) =
∫
Ω
ϕG(q)sθ(q)dq (4.5)

Notice that we omitted the last term in Eq. (4.4) as it is independent of network parameters. The
level set function ϕG is pre-computed directly from the ground-truth region G. In practice, our
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boundary loss in Eq. (4.5) is the sum of linear functions of the regional softmax probability out-
puts of the network. Therefore, it can be easily combined with standard regional losses (LR ) and
implemented with any existing deep network architecture for N-D segmentation:

LR(θ) + αLB(θ), (4.6)

where α ∈ R is a parameter balancing the two losses.

It is worth noting that our boundary loss uses ground-truth boundary information via pre-
computed level-set function ϕG(q), which encodes the distance between each point q and ∂G. In
Eq. (4.5), the softmax for each point q is weighted by the distance function. Such distance-to-
boundary information is omitted in widely used regional losses, where all the points within a given
region are treated equally, independently of their distances from the boundary.

Notice that the global minimum (smallest possible value) of our boundary loss (4.5) is reached
when all the negative values in the distance function are included in the sum (i.e., the softmax
predictions for the pixels within the ground-truth foreground are equal to 1) and all the positive
values are omitted (i.e., the softmax predictions within the background are equal to zero). This
means that the global optimum is reached for softmax predictions that correspond exactly to the
ground truth, which confirms the meaningfulness of our boundary loss. It is also worth noticing
that the gradient of our loss is ϕG multiplied the gradient of the softmax predictions. This results in
negative factors for the pixels inG, which encourages sθ to increase during SGD, with themagnitude
(strength) of the factors depending on the distance between the pixel and the ground-truth boundary
(the further the pixel from the boundary, the higher the magnitude of the factor). Positive factors
for pixels within the background (Ω \G) encourage the softmax predictions to decrease.

As we will see in our experiments, it is important to use our boundary loss in conjunction
with a regional loss for the following technical facts. As discussed earlier, the global optimum of
our boundary loss corresponds to a strictly negative value, with the softmax probabilities yielding
a non-empty foreground region. However, an empty foreground, with approximately null values
of the softmax probabilities almost everywhere, corresponds to very low gradients. Therefore, this
trivial solution is close to a local minimum or a saddle point. This is why we integrate our boundary
loss with a regional loss: the regional loss guides training during the first epochs and avoids getting
stuck in such trivial solutions. In the next section, we will discuss various scheduling strategies for
updating the weight of the boundary loss during training, with the boundary loss becoming very
dominant, almost acting alone, towards the end of the training process. It is also worth noting that
this behaviour of boundary terms is conceptually similar to the behaviour of classical and popu-
lar contour-based energies for segmentation, e.g., level set Geodesic Active Contours (GAC) [100]
or discrete Markov Random Fields (MRFs) for boundary regularization and edge alignment [12],
which require additional regional terms to avoid trivial empty-region solutions.
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4.3 Experiments

In this section, we perform two sets of experiments. First, we perform comprehensive evaluations
demonstrating to positive effect of integrating our boundary loss with different regional losses LR.
Then, we perform a study on the different strategies for selecting and scheduling weight α in (4.6),
showing its impact on performances and good default values for new applications.

4.3.1 Datasets

To evaluate the proposed boundary loss, we selected two challenging brain lesion segmentation
tasks, each corresponding to highly unbalanced classes.

ISLES The training dataset provided by the ISLES organizers is composed of 94 ischemic stroke
lesion multi-modal scans. In our experiments, we split this dataset into training and validation
sets containing 74 and 20 examples, respectively. Each scan contains Diffusion maps (DWI) and
Perfusion maps (CBF, MTT, CBV, Tmax and CTP source data), as well as the manual ground-truth
segmentation. The spatial resolution goes from 0.8mm×0.8mm×4mm to 1mm×1mm×12mm.
More details can be found in the ISLES website2.

WMH The public dataset of theWhiteMatterHyperintensities (WMH)3 MICCAI 2017 challenge
contains 60 3D T1-weighted scans and 2D multi-slice FLAIR acquired from multiple vendors and
scanners in three different hospitals. The spatial resolution goes from 0.95mm×0.95mm×3mm to
1.21mm×1mm×3mm for each volume. In addition, the ground truth for the 60 scans is provided.
From the whole set, 50 scans were used for training, and the remaining 10 for validation.

4.3.2 Compared losses

As stated previously, our proposed boundary loss can be combined with any standard regional loss.
In the following experiments, we evaluated different popular ones:

GDL [23] We use the binary case of this loss, described in Equation (4.1). This is also the baseline
loss that we use for the experiments on the selection of α. An important advantage of this loss is
that it is hyper-parameter free.

Distance weighted cross-entropy [17] UNet original paper proposed this loss as a way to inte-
grate spatial information during the training. It is a modified weighted cross-entropy loss, where the

2http://www.isles-challenge.org
3http://wmh.isi.uu.nl

http://www.isles-challenge.org
http://wmh.isi.uu.nl
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weight for each pixel depends both on the class distribution, and its distance to the two cells closest
boundaries. We adapted it for our case, where we take into account only one distance:

LUNET(θ) = −
∫
C

∫
Ω
uc(p) log s

c
θ(p)dpdc,

where C is the set of classes and scθ(p) are the network predictions for class c. uc(p) is defined as:

uc(p) = gc(p)

[
wc + w0e

−DG(p)2

2σ2

]
,

where wc =
∫
Ω gc(p)dp

|Ω| , and w0 = 10 and σ = 5 are two hyper-parameters. We kept the paper’s
default values.

Focal loss [95] The idea of this loss is to give hard examples a more important weight:

LFOCAL = −
∫
C

∫
Ω
(1− scθ(p))γgc(p) log scθ(p)dpdc,

with γ = 2 as default hyper-parameter. Therefore, during training, pixels correctly classified with a
high confidence will have little to no influence.

Hausdorff loss [97] This closely related loss is also designed to minimize some distance between
the two boundaries, but through a different path. We refer to this loss as LHD.

LHD =

∫
Ω
(g(p)− sθ(p))2(DG(p)

β +DS(p)
β)dp,

where DS denotes the distance function from predicted boundary S, after thresholding sθ. β is a
hyper-parameter, which the authors of [97] set to 2 following a grid search. Unlike our boundary
loss, computing DS cannot be done in a single step before training. The distance needs to be re-
computed at each epoch during training, for all the images. It also requires to store the whole
volume Ω in memory, as we cannot compute the distance map for only a subset of Ω. These might
be important computational and memory limitations, more so when dealing with large images, as
is the case for 3D distance maps.

4.3.3 2D and 3D distance maps

While the main experiments resort to a distance map computed from each individual 2D slice,
we evaluate the proposed boundary loss with a distance map computed from the whole initial 3D
segmentation mask. Equation (4.5) enables us to have only a subset of Ω at each update, making it
possible to use a 3D distance map with mini-batches of 2D slices.
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4.3.4 Selection of alpha

We study several strategies for selecting α, and its effect on the performances. On top of a constant
pre-selected α, we evaluated simple scheduling strategies to update it during the training.

Constant α The simplest method would be to use a constant during the whole training, but this
might require careful tuning of its value.

Increase α We start with a low value of α > 0, and increase it gradually at the end of each epoch.
The weight of the regional loss LR remains constant over time. At the end of the training, the two
losses have the same weight.

Rebalance α First we rewrite our combined loss as (1−α)LR+αLB . As for the increase strategy,
we start with a low α > 0, and increase it over time. In this way, we give more importance to the
regional loss term at the beginning while gradually increasing the impact of the boundary loss term.
Note that we make sure that the weight for LR never reaches 0; the two losses are used at all times
during training.

4.3.5 Implementation details

Data pre-processing While the scans are provided as 3D images, we process them as a stack of
independent 2D images, which are fed into the network. In fact, the scans in some datasets, such as
ISLES, contain between 2 and 16 slices, making them ill-suited for 3D convolutions in those cases.
The scans were normalized between 0 and 1 before being saved as a set of 2D matrices, and re-scaled
to 256×256 pixels if needed. When several modalities were available, all of them were concatenated
before being used as input to the network. We did not use any data augmentation in our experiments.

Architecture and training We employed UNet [17] as deep learning architecture in our experi-
ments. To train our model, we employed Adam optimizer, with a learning rate of 0.001 and a batch
size equal to 8. The learning rate is halved if the validation performances do not improve during 20
epochs. We did not use early stopping.

To compute the level set function ϕG in Eq. (4.5), we used standard SciPy functions4. Note
that, for slices containing only the background region, we used a zero-distance map, assuming that
the regional loss is sufficient in those cases. For the increase and rebalance α scheduling strategies,
we start with α = 0.01 and increase it by 0.01 at the end of each epoch. For all the experiments
comparing different losses, we use the same rebalance strategy, with the same hyper-parameters.

4https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.
distance_transform_edt.html

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html
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In addition, we evaluated the performance when the boundary loss is the only objective, i.e.,
α = 0.

For our implementation, we used PyTorch [70], and ran the experiments on amachine equipped
with an NVIDIA GTX 1080 Ti GPU with 11GBs of memory. Our code (data pre-processing,
training and testing scripts) is publicly available5. As [97] did not release their code, we relied on
the re-implementation from [101]6.

Evaluation For evaluation purposes, we employ the common Dice Similarity Coefficient (DSC)
and modified Hausdorff Distance7 (HD95) metrics.

4.3.6 Results

Comparison of regional losses

In this section, we detail the results that we obtained when using different regional losses LR.

Quantative evaluation Table 4.1 reports the DSC and HD performances for our experiments
using four different choices of LR, with each regional term used either alone or in conjunction with
our boundary loss in Eq. (4.6), on the ISLES and WMH datasets. In most of the settings, adding
the boundary loss during training improves the performances, as reflected in the significantly bet-
ter DSC and HD values. For instance, on the ISLES segmentation task, adding the boundary loss
yielded about 13% improvement in DSC over using Generalized Dice loss alone, and about 3% im-
provement over using UNet cross-entropy or focal loss alone. The discrepancy of the improvements
the boundary loss brings might be due to the difference in the difficulty of the tackled tasks. The
more difficult the tasks (i.e., when regional terms have difficulty achieving good performances),
the larger the gain boundary loss brings (as it complements regional information). GDL/ISLES
is a noticeable case, where boundary loss corrected substantially the performance of the GDL re-
gional loss, making it the winning competitor (although, without boundary information, it is the
worse-performing regional loss).

The mixed results with the UNet cross-entropy (improvement on ISLES, but stall on WMH),
and the difference on theHD95metrics can potentially be explained by a toxic interplay between the
two losses: both of them are trying to use the distance from the boundary information, potentially
counter-acting each others, and introducing instability.

Computing the distance map from the 3D volume rather than from the 2D slices gives a small
boost in performance (about 1% DSC), and is more noticeable on the training curve for WMH
(Figure 4.3). This difference could be explained by the spacing between the slices on the z axis: they

5https://github.com/LIVIAETS/surface-loss
6https://github.com/JunMa11/SegWithDistMap
7We report the 95th percentile distance value instead of the maximum-distance value.

https://github.com/LIVIAETS/surface-loss
https://github.com/JunMa11/SegWithDistMap
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Table 4.1: Average DSC and HD95 values (and standard deviation over three independent runs)
achieved on the validation subset. Best results highlighted in bold.

Loss ISLES WMH

DSC HD95 (mm) DSC HD95 (mm)

LB NA NA NA NA
LHD NA NA 0.638 (NA) 4.578 (NA)
GDL 0.511 (0.016) 5.320 (1.742) 0.768 (0.051) 3.634 (2.570)

w/ LB (2D) 0.644 (0.026) 4.795 (3.712) 0.793 (0.006) 2.039 (1.834)
w/ LB (3D) 0.659 (0.001) 2.725 (2.196) 0.818 (0.003) 1.702 (1.982)
w/ LHD 0.582 (0.015) 4.126 (1.634) 0.805 (0.015) 2.151 (2.100)

UNet cross-entropy [17] 0.608 (0.025) 4.572 (0.675) 0.757 (0.015) 4.355 (3.388)
w/ LB (2D) 0.631 (0.016) 5.961 (2.291) 0.756 (0.022) 2.887 (2.629)

Focal loss [95] 0.631 (0.046) 4.989 (2.775) 0.808 (0.026) 1.816 (1.370)
w/ LB (2D) 0.650 (0.019) 1.770 (0.549) 0.786 (0.031) 2.258 (2.513)

are quite close (and correlated) in the case of WMH. However, in the case of ISLES, the big spacing
(around 1cm) makes slices quite independent. Adding 3D information in this case is less helpful.

While the Hausdorff loss [97] also improves the results over the GDL alone (around 7% on
ISLES), its performance is not always at the same level as boundary loss (similar performance on
WMH, but lower on ISLES). This is consistent with the findings of [101], which found that the
differences in performances are dataset dependent.

Using the boundary loss alone does not yield the same competitive results as a joint loss (i.e.,
boundary and region), making the network collapse quickly into empty foreground regions, i.e.,
softmax predictions close to zero8. We believe that this is due to the following technical facts. In
theory, the global optimum of the boundary loss corresponds to a negative value, as a perfect overlap
sums only over the negative values of the distance map. In this case, the softmax probabilities
correspond to a non-empty foreground. However, an empty foreground (null values of the softmax
probabilities almost everywhere) corresponds to low gradients. Therefore, this trivial solution is
close a local minimum or a saddle point. This is not the case when we use our boundary loss
in conjunction with a regional loss, which guides the training during the first epochs and avoids
getting stuck in such a trivial solution. The scheduling method then increases the weight of the
boundary loss, with the latter becoming very dominant towards the end of the training process.
This behaviour of boundary terms is conceptually similar to the behaviour of classical and popular
contour-based energies for level set segmentation, e.g., geodesic active contours [100], which also
require additional regional terms to avoid trivial solutions (i.e., empty foreground regions).

8For this reason, we do not report metrics in this case, as it would be meaningless.
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The learning curves depicted in Figure 4.3 show the gap in performances between using a re-
gional loss LR alone and when augmented with our boundary loss, for different choices of LR. In
most of the settings, the difference becomes significant at convergence. This behaviour is most visi-
ble when LR = LGDL, and is consistent for both metrics and both dataset, which clearly shows the
benefits of employing the proposed boundary loss term.

Figure 4.3: Evolution of DSC values on validation subsets, for different base losses, on both ISLES
and WMH. Best viewed in colors.
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Qualitative evaluation Qualitative results are depicted in Fig. 4.4. Inspecting these results visu-
ally, we can observe that there are two major types of improvements when employing the proposed
boundary loss. First, as the methods based on DSC losses, such as GDL, do not use spatial informa-
tion, prediction errors are treated equally. This means that the errors for pixels/voxels in an already
detected object have the same importance as the errors produced in completely missed objects. On
the contrary, as our boundary loss is based on the distance map from the ground-truth boundary
∂G, it will penalize much more such cases, helping to recover small and far regions. This effect is
best illustrated in Fig. 4.1 and Fig. 4.4 (third row). False positives (first row in Fig. 4.4) will be far
away from the closest foreground, getting a much higher penalty than with the GDL alone. This
helps in reducing the number of false positives. Additional qualitative results for other base losses,
and their combination with the proposed boundary loss, are depicted in Figures 4.5, 4.6. These
figures also show failure cases ( last column) of the boundary loss.

Figure 4.4: Visual comparison on two different datasets from the validation set.
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Computational complexity It is worth mentioning that, as the proposed boundary loss term
involves an element-wise product between two matrices—i.e., the pre-computed level-set function
ϕG and the softmax output sθ(p)—the complexity that it adds is negligible as showed in Table 4.2.
Contrary, the Hausdorff loss [97] introduces around 10% of slowdown in the training process. This
will be further magnified if we generalize to multi-class problems, where an individual distance map
should be computed for each class.

Table 4.2: Training time required by different losses. We report the average and standard deviation
batch time in seconds for each method.

Loss Time (s) per batch

ISLES (Batch size = 4) WMH (Batch size = 8)

GDL 0.187 (0.129) 0.345 (0.132)
w/ LB 0.190 (0.128) 0.345 (0.129)
w/ LHD 0.210 (0.108) 0.392 (0.092)

Selection of alpha

Table 4.3 reports the performances of the proposed approach on the ISLES segmentation task for
different α values and scheduling techniques. Figure 4.3 shows a subset of the learning curves related
to α selection strategies in Table 4.3. This is an indication that, while our boundary loss can benefit
from a tuned balance between the two losses, even a sub-optimal α can already provide improve-
ment over the regional loss alone. Observe that increasing the weight of constant α yields better
performances, up to a certain value, with the performances decreasing starting from α = 1.5. With
α = 2,the performance is similar to a network trained with the boundary loss alone. In contrast, us-
ing any of the two proposed scheduling strategies (increasing α or re-balancing) yields better results
than any constant α, without having to explore many configurations.

From the learning curves (Figure 4.7), we can notice that the GDL alone and the GDL with a
small constant α = 0.001 have a similar training DSC over time, but that their validation DSC are
significantly different. A similar behaviour can be observed by examining the results with constant
α = 1 and the rebalanced α: while the rebalancing training DSC is slightly higher during the whole
training, the validation DSC becomes significantly better around half the training time, where the
high constant α performances starts decreasing.

The rebalancing strategy was used in all other experiments, and as showed in Table 4.1, proved
to be a good default strategy to integrate the boundary loss with another regional loss.
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Figure 4.5: Visual comparison on the WMH dataset for different training losses. The last column
depicts a failure case, where the proposed loss does not enhance the regional loss performance. Best
viewed in colors.
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Figure 4.6: Visual comparison on the ISLES dataset for different training losses. The last column
depicts a failure case, where the proposed loss does not enhance the regional loss performance. Best
viewed in colors.
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Table 4.3: Results on ISLES validation set for different α.

Strategy ISLES

DSC HD95

GDL only 0.511 (0.016) 5.320 (1.742)

Constant α

α = 0.001 0.545 (0.020) 4.778 (1.546)
α = 0.01 0.566 (0.019) 5.052 (1.395)
α = 0.05 0.606 (0.015) 5.326 (1.712)
α = 0.1 0.605 (0.010) 5.762 (1.782)
α = 0.5 0.604 (0.006) 9.234 (10.463)
α = 1 0.628 (0.023) 2.462 (0.706)
α = 1.5 0.565 (0.074) 3.335 (1.164)
α = 2 0.549 (0.084) 20.275 (16.603)

Increase α 0.622 (0.004) 4.952 (1.773)
Rebalance α 0.644 (0.026) 4.795 (3.712)

Figure 4.7: Comparison of the training and validationDSC curves for differentα selection strategies.
For readability, not all settings from Table 4.3 have been included. Best viewed in colors.

4.4 Conclusion and future works

We proposed a boundary loss term that can be easily combined with any standard regional loss, to
tackle segmentation tasks in highly unbalanced scenarios. Furthermore, the proposed term can be
implemented with any existing deep network architecture and for any N-D segmentation problem.
Our experiments on two challenging and highly unbalanced datasets demonstrated the benefits of
including our boundary loss during training. It consistently improved the performances, and by a
large margin on one data set, with enhanced training stability.
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In this work, we evaluated the proposed boundary loss in the context of class imbalance. How-
ever, there are other interesting avenues for extending and evaluating our approach. For instance,
our boundary loss has a spatial regularization effect because it is based on distance-to-boundary
information. In particular, we observed experimentally that it yield contours, which are, typi-
cally, smoother than those obtained with regional losses. Focused on the important problem of
unbalanced segmentation, our experiments did not fully investigate the benefits of such a spatial
regularization. An interesting future research avenue will be to explore such a regularization effect
in applications with challenging imaging noise, which may prevent regional losses from generating
smooth contours, e.g., ultrasound imaging. Another limitation of our formulation and experiments
is that they were limited to binary (two-region) segmentation problems. It will be interesting to in-
vestigate extensions of boundary loss to the multi-region scenario, with competing distance maps
from multiple structures and various/complex topological constraints (e.g., one structure fully in-
cluded within another).
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Abstract

This study investigates a curriculum-style strategy for semi-supervised CNN segmentation,
which devises a regression network to learn image-level information such as the size of the target
region. These regressions are used to effectively regularize the segmentation network, constrain-
ing the softmax predictions of the unlabeled images to match the inferred label distributions.
Our framework is based on inequality constraints, which tolerate uncertainties in the inferred
knowledge, e.g., regressed region size. It can be used for a large variety of region attributes. We
evaluated our approach for left ventricle segmentation in magnetic resonance images (MRI),
and compared it to standard proposal-based semi-supervision strategies. Our method achieves
competitive results, leveraging unlabeled data in a more efficient manner and approaching full-
supervision performance.
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5.1 Introduction

I
n the recent years, deep learning architectures, and particularly convolutional neu-
ral networks (CNNs), have achieved state-of-the-art performances in a breadth of visual
recognition tasks. These architectures currently dominate the literature in medical im-
age segmentation [42]. The generalization capabilities of these networks typically rely

on large and annotated datasets, which, in the case of segmentation, consist of precise pixel-level
annotations. Obtaining expert annotations in medical images is a costly process that also requires
clinical expertise. The lack of large annotated datasets has driven research in deep segmentationmod-
els that rely on reduced supervision for training, such as weakly [34, 29, 3, 73] or semi-supervised
[71, 102] learning. These strategies assume that annotations are limited or coarse, such as image-level
tags [28, 3], scribbles [32] or bounding-boxes [4].

In this paper, we focus on semi-supervised learning, a common scenario in medical imaging,
where a small set of images are assumed to be fully annotated, but an abundance of unlabeled images
is available. Recent progress of these techniques in medical image segmentation has been bolstered
by deep learning [71, 103, 104, 105, 102, 106]. Self-training is a common semi-supervised learning
strategy, which consists of employing reliable predictions generated by a deep learning architecture
to re-train it, thereby augmenting the training set with these predictions as pseudo-labels [71, 3,
4]. Although this approach can leverage unlabeled images, one of its main drawbacks is that early
mistakes are propagated back to the network, being re-amplified during training [107, 108]. Several
techniques were proposed to overcome this issue, such as co-training [106] and adversarial learning
[109, 110, 111]. Nevertheless, with these approaches, training typically involves several networks,
or multiple objective functions, which might hamper the convergence of such models.

Alternatively, some weakly supervised segmentation approaches have been proposed to con-
strain the network predictions with global label statistics, for example, in the form of target-region
size [53, 73, 3]. For instance, Jia et .al [53] employed an L2 penalty to impose equality constraints
on the size of the target regions in the context of histopathology image segmentation. However,
their formulation requires the exact knowledge of region size, which limits its applicability. More
recently, Kervadec et al. [73] proposed using inequality constraints, which provide more flexibility,
and significantly improves performance compared to cases where learning relies on partial image
labels in the form of scribbles. Nevertheless, the values used to bound network predictions in [73]
are derived frommanual annotations, which is a limiting assumption. Another closely related work
is the curriculum learning strategy proposed in the context of unsupervised domain adaptation for
urban images in [51]. In this case, the authors proposed to match global label distributions over
source ( labelled) and target (unlabelled) images by minimizing the KL-divergence between distri-
butions. Finally, it is worth noting that the semi-supervised learning technique in [104] embeds
semantic constraints on the adjacency graph of a given region.

Inspired by this research, we propose a curriculum-style strategy for deep semi-supervised seg-
mentation, which employs a regression network to predict image-level information such as the size
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of the target region. These regressions are used to effectively regularize the segmentation network,
enforcing the predictions for the unlabeled images to match the inferred label distributions. Con-
trary to [51], our framework uses inequality constraints, which provides greater flexibility, allowing
uncertainty in the inferred knowledge, e.g., regressed region size. Another important difference is
that the proposed framework can be used for a large variety of region attributes (e.g., shape mo-
ments). We evaluated our approach in the task of left ventricle segmentation in magnetic resonance
images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our method
achieves very competitive results, leveraging unlabeled data in amore efficientmanner and approach-
ing full-supervision performance. We made our code publicly available1.

5.2 Self-training for semi-supervised segmentation

Let X : Ω ⊂ R2,3 → R denotes a training image, with Ω its spatial domain. Consider a semi-
supervised scenario with two subsets: S = {(Xi, Yi)}i=1,...,n which contains a set of images Xi

and their corresponding pixel-wise ground-truth labels Yi, and U = {Xj}j=1,...,m a set of unlabeled
images, with m � n. In the fully supervised setting, training is formulated as minimizing the
following loss with respect to network parameters θ:

LY (θ) = −
∑
i∈S

∑
p∈Ω

Yi,p logS(Xi|θ)p (5.1)

where S(Xi|θ)p represents a vector of softmax probabilities generated by the CNN at each pixel p
and image i. To simplify the presentation, we consider the two-region segmentation scenario (i.e.,
two classes), with ground-truth binary labels Yi,p taking values in {0, 1}, 1 indicating the target
region (foreground) and 0 indicating the background. However, our formulation can be easily ex-
tended to the multi-region case. Common approaches for semi-supervised segmentation [71, 28]
generate fake full masks (segmentation proposals) Ỹ for the unlabeled images, which are then used
iteratively for network training by adding a standard cross-entropy loss of the form in Eq. (5.1):
minθ LY (θ) + LỸ (θ). The process consists of alternating segmentation-proposal generation and
updating network parameters using both labeled data and the new generated masks. Typically such
proposals are refined with additional priors suh as dense CRF [32]. However, errors in such propos-
als maymislead training as the cross-entropy loss is minimized overmislabled points and, reinforcing
early mistakes during training, as is well-known in the semi-supervised learning literature [107, 108].

5.3 Curriculum semi-supervised learning

The general principle of curriculum learning consists of solving easy tasks first in order to infer some
necessary properties about the unlabeled images. In particular, the first task is to learn image-level

1https://github.com/LIVIAETS/semi_curriculum

https://github.com/LIVIAETS/semi_curriculum
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properties, e.g. the size of the target region, which is easier than learning pixelwise segmentations
within an exponentially large label space. Then, we use such image-level properties to facilitate seg-
mentation via constrained CNNs. Fig. 5.1 depicts an illustration of our curriculum semi-supervised
segmentation. We first use an auxiliary network that predicts the target-region size for a given im-
age. Particularly, we train a regression network R (with parameters θ̃) by solving the following
minimization problem:

min
θ̃

∑
i∈S

R(Xi|θ̃)−
∑
p∈Ω

Yi,p

2

. (5.2)

This amounts to minimizing the squared difference between the predicted size and the actual region
size.

Nowwe can define our constrained-CNN segmentation problem using auxiliary size predictions
R(Xi|θ̃):

min
θ

LY (θ) (5.3)

s.t. (1− γ)R(Xi|θ̃) ≤
∑
p∈Ω

S(Xi|θ)p ≤ (1 + γ)R(Xi|θ̃) ∀i ∈ U ,

where the inequality constraints impose the learned image-level information (i.e., region size) on
the outputs of the segmentation network for unlabeled images, and γ is a hyper-parameter con-
trolling constraints tightness. We use a penalty-based approach [73] for handling the inequality
constraints, which accommodates standard stochastic gradient descent. This amounts to replacing
the constraints in (5.3) with the following penalty over unlabeled samples:

LU (θ) =
∑
i∈U
C

∑
p∈Ω

S(Xi|θ)p

 (5.4)

C(t) =


(t− (1− γ)R(Xi|θ̃))2 if t ≤ (1− γ)R(Xi|θ̃)
(t− (1 + γ)R(Xi|θ̃))2 if t ≥ (1 + γ)R(Xi|θ̃)
0 otherwise

(5.5)

This gives our final unconstrained optimization problem: minθ LY (θ) + λLU (θ), with λ a hyper-
parameter controlling the relative contribution of each term.

5.4 Experiments

5.4.1 Setup

Data Our experiments focused on left ventricular endocardium segmentation. We used the train-
ing set from the publicly available data of the 2017 ACDC Challenge [112]. This set consists of 100
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Figure 5.1: Illustration of our curriculum semi-supervised segmentation strategy.

cine magnetic resonance (MR) exams covering well defined pathologies: dilated cardiomyopathy,
hypertrophic cardiomyopathy, myocardial infarction with altered left ventricular ejection fraction
and abnormal right ventricle. It also included normal subjects. Each exam only contains acquisi-
tions at the diastolic and systolic phases. We sliced and resized the exams into 256 × 256 images.
No additional pre-processing was performed.

Training For the experiments, we employed 75 exams for training and the remaining 25 for val-
idation. From the training set, we consider that n images are fully annotated and the pixel-wise
annotations of the remaining 75-n images are unknown. The n images, and their corresponding
ground truth, are employed to train both the auxiliary size predictor and the main segmentation
network, in a separate way. To validate both networks, we split the validation set into two smaller
subsets of 5 and 20 exams, respectively. The training set undergoes data augmentation only to train
the size regressor, by flipping, mirroring and rotating (up to 45◦) the original images, obtaining a
training set that is 10 times larger.

Implementation details We employed ResNeXt 101 [113] as the backbone architecture for our
regressor model, with the squared L2 norm as the objective function. We trained via standard
stochastic gradient descent, with a learning rate of 5×10−6, a momentum of 0.9 and a weight decay
of 10−4, for 200 epochs. The learning rate was halved at epochs 100 and 150. We used a batch size
of 10. We used ENet [68] as the segmentation network, trained with Adam [114], a learning rate of
5 × 10−4, β1 = 0.9 and β2 = 0.99 for 100 epochs. The learning rate was halved if validation DSC
did not improve for 20 epochs. We used a batch size of 1, and γ from Eq. (5.4) is set at γ = 0.1. We
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did not use any form of post-processing on the network output.

ComparativeMethods We compare the performance of the proposed semi-supervised curriculum
segmentation approach to several models. First, we train a network using only n exams and their
corresponding pixel-wise annotations, which is referred to as FS. Then, once this model is trained,
and following standard proposal-based strategies for semi-supervision, e.g., [71], we perform the
inference on the remaining 75-n exams, and include the CNN predictions in the training set, which
serve as pseudo-labels for the non-annotated images (referred to as Proposals). In this particular case,
the training reduces to minimizing the cross-entropy over all the pixels in the manually annotated
images and over the pixels predicted as left-ventricle in the pseudo-labels. Since we investigate how
to leverage unlabeled data only by learning from the subset of labeled data, we do not integrate
any additional cues during training, such as Conditional Random Fields (CRF)2. Finally, we train a
model with the exact size derived from the ground truth for each image, as in [73], which will serve
as an upper bound, referred to as Oracle.

Evaluation We resort to the common dice (DSC) overlap metric between the ground truth and
the CNN segmentation to evaluate the performances of the segmentation models. More specifically,
we report the mean and standard deviation of the validation DSC over the last 50 epochs of training.

5.4.2 Results

We report in Table 5.1 and Fig. 5.2 the quantitative evaluation of the different segmentation mod-
els. First, we can observe that integrating the size predicted on unlabeled images by the auxiliary
network improves the performance compared to solely training from labeled images. The gap is
particularly significant when few annotated images are available, ranging from nearly 15 to 25% of
difference in terms of DSC. As more labeled images are available, the proposed strategy still im-
proves the performance of the fully supervised counterpart, but by a smaller margin, which goes
from 1 to 3%. Compared to the Oracle, our method achieves comparable results as the number of
training samples increases. This suggests that, when few annotated patients are available, having a
better estimation of the size helps to better regularize the network. It is noteworthy to mention that
in the Oracle, the exact size is known for each image, which results in extra supervision compared
to the proposed method. The proposalsmethod achieves the same or worse results than its FS coun-
terpart, for all the n values evaluated. These results indicate that n patients are not sufficient to train
an auxiliary network that generates usable pseudo-labels, due to the difficulty of the segmentation
task. This confirms that training a network on an easier task, e.g., learning the size of the target
region, can guide the training in a semi-supervised setting.

Evolution of DSC on the validation set over training for some models is depicted in Fig. 5.3.
From these plots, we can observe that the auxiliary network facilitates the training of a harder task,

2Note that the proposal-based methods in [71] use CRF to boost performance.
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Table 5.1: Quantitative results for the different models. Values represent the mean Dice (and stan-
dard deviation) over the last 50 epochs.

# of labelled
patients

Method

FS Proposals Proposed Oracle [73]

5 24.8 (4.9) 8.1 (0.8) 53.1 (3.0) 74.3 (2.5)
10 44.4 (8.3) 43.9 (2.9) 58.5 (3.6) 75.7 (3.9)
20 71.7 (3.2) 49.1 (5.0) 72.7 (1.6) 79.0 (2.5)
30 73.1 (1.7) 62.6 (4.4) 75.4 (1.6) 77.0 (1.9)
40 75.8 (2.4) 68.8 (5.6) 76.3 (2.1) 80.4 (2.1)
75 81.6 (1.9) NA NA NA

Figure 5.2: Mean DSC per method and for sev-
eral n annotated patients.

Figure 5.3: ValidationDSC over time, with a sub-
set of the evaluated models.

consistently achieving higher performance and better stability than its FS counterpart, especially
when few labeled images are available. Regarding the instability of the FS method, it may be caused
by the small number of samples employed for training, with no other source of information that
regularizes the network.

Qualitative results are depicted in Fig. 5.4. Particularly, we show the prediction on the same slice
with the different methods and for increasing n. We first observe that predictions of the FSmodel are
very unstable, not clearly improving asmore labeled images are included in the training, which aligns
with the results found in Fig. 5.3. Then, the Proposals approach fails to generate visually acceptable
segmentations, even with 30 pixel-wise labeled patients. Although its performance improves with
the number of labeled patients used in training, its results are not visually satisfying for any value
of n. Our curriculum semi-supervised segmentation approach achieves decent results from n=5. It
only requires 20 patients to yield comparable segmentations to those of the Oracle and the manual
ground truth.
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Figure 5.4: Visual comparison for the different methods, with varying number of fully annotated
patients used for training. Best viewed in colors
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Abstract

We propose a novel weakly supervised learning segmentation based on several global con-
straints derived from box annotations. Particularly, we leverage a classical tightness prior to a
deep learning setting via imposing a set of constraints on the network outputs. Such a power-
ful topological prior prevents solutions from excessive shrinking by enforcing any horizontal
or vertical line within the bounding box to contain, at least, one pixel of the foreground re-
gion. Furthermore, we integrate our deep tightness prior with a global background emptiness
constraint, guiding training with information outside the bounding box. We demonstrate ex-
perimentally that such a global constraint is much more powerful than standard cross-entropy
for the background class. Our optimization problem is challenging as it takes the form of
a large set of inequality constraints on the outputs of deep networks. We solve it with se-
quence of unconstrained losses based on a recent powerful extension of the log-barrier method,
which is well-known in the context of interior-point methods. This accommodates standard
stochastic gradient descent (SGD) for training deep networks, while avoiding computation-
ally expensive and unstable Lagrangian dual steps and projections. Extensive experiments over
two different public data sets and applications (prostate and brain lesions) demonstrate that
the synergy between our global tightness and emptiness priors yield very competitive perfor-
mances, approaching full supervision and outperforming significantly DeepCut. Furthermore,
our approach removes the need for computationally expensive proposal generation. Our code
is publicly available.
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6.1 Introduction

S
emantic segmentation is of paramount importance in the understanding and inter-
pretation of medical images, as it plays a crucial role in the diagnostic, treatment and
follow-up of many diseases. Even though the problem has been widely studied dur-
ing the last decades, we have witnessed a tremendous progress in the recent years with

the advent of deep convolutional neural networks (CNNs) [42, 17, 4, 41]. Nevertheless, a main
limitation of these models is the need of large annotated datasets, which hampers the performance
and limits the scalability of deep CNNs in the medical domain, where pixel-wise annotations are
prohibitively time-consuming. Weakly supervised learning has gained popularity to alleviate the
need of large amounts of pixel-labeled images. Weak labels can come in the form of image tags
[3], scribbles [34], points [18], bounding boxes [30, 29, 75] or global constraints [53, 73]. A com-
mon paradigm in the weakly supervised learning setting is to employ weak annotations to generate
pseudo-masks or proposals. These proposals are ‘’fake" labels, which are generated iteratively to refine
the parameters of deep CNNs, thereby mimicking full supervision. Unfortunately, as discussed in
several recent works [32, 73], proposals contain errors, which might be propagated during training,
affecting severely segmentation performances. Furthermore, iterative proposal generation increases
significantly the computation load for training. More recently, several studies investigated global
loss functions, e.g., in the form of constraints on the target-region size [3, 53, 73, 115]. This can
be done by constraining the softmax outputs of deep networks, leveraging unlabeled data with a
single loss function and removing the need for iterative proposal generation. Nevertheless, despite
the good performances achieved by these works in certain practical scenarios, their applicability
might be limited by the assumptions underlying such global constraints, e.g., precise knowledge of
the target region size.

Among different weak supervision approaches, bounding box annotations are an appealing al-
ternative due to their simplicity and low-annotation cost. In practice, bounding boxes can be defined
with two corner coordinates, allowing fast placement and light storage. Furthermore, they provide
localization-awareness, which spatially constrains the problem. This form of supervision has indeed
become popular in computer vision to initialize shallow segmentation models, whose outputs are
later used to train deep networks, as in full supervision [30, 28, 29, 116]. A naive use of bounding
boxes amounts to generating pseudo-labels by simply considering each pixel within the bounding
box as a positive sample for the respective class [28, 4]. However, in a realistic scenario, a bounding
box also contains background pixels. To account for this, some advanced foreground extraction
methods are employed. Particularly, the very popular GrabCut [10] is a standard choice to generate
segmentation masks from bounding boxes, even though alternative approaches such as Multiscale
Combinatorial Grouping (MCG) [117] were recently used for the same purpose [30].

Contributions We propose a novel weakly supervised learning paradigm based on several global
constraints derived from box annotations. First, we leverage the classical tightness prior in [79] to a
deep learning setting, and re-formulate the problem by imposing a set of constraints on the network
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outputs. Such a powerful topological prior prevents solutions from excessive shrinking by enforc-
ing any horizontal or vertical line within the bounding box to contain, at least, one pixel of the
foreground region. Furthermore, we integrate our deep tightness prior with a global background
emptiness constraint, guiding training with information outside the bounding box. As we will see
in our experiments, such a global constraint is much more powerful than standard cross-entropy for
the background class. Our optimization problem is challenging as it takes the form of a large set
of inequality constraints, which are difficult to handle in the context of deep networks. We solve
it with sequence of unconstrained losses based on a recent powerful extension of the log-barrier
method [118], which is well-known in the context of interior-point methods. This accommodates
standard stochastic gradient descent (SGD) for training deep networks, while avoiding computa-
tionally expensive and unstable Lagrangian dual steps and projections. Extensive experiments over
two different public data sets and applications (prostate and brain lesions) demonstrate that the
synergy between our global tightness and emptiness priors yield very competitive performances,
approaching full supervision and outperforming significantly DeepCut [4]. Furthermore, our ap-
proach removes the need for computationally expensive proposal generation.

Figure 6.1: Example of weak labels on two different tasks: prostate segmentation and stroke lesion
segmentation.



96 | Chapter 6 Bounding boxes for weakly supervised segmentation

6.2 Related works

6.2.1 Weakly supervised medical image segmentation

Despite the increasing interest in weakly supervised segmentation models in the computer vision
community, the literature on these models in medical imaging remains scarce. The authors of [35]
leverage point annotations in the context of histopathology images. From labeled points, they de-
rived additional information in the form of a voronoi diagram, so as to generate coarse labels for
nuclei segmentation. Their objective function integrated the cross-entropy with coarse labels and
the conditional random field (CRF) loss in [32]. Similarly to previous works in computer vision,
[119] used classification activation maps (CAMs) derived from the networks as a pseudo-masks to
train a CNN in a fully supervised manner. To constrain the location of the target, they employed
an Active Shape Model (ASM) as a prior information. Nevertheless, this method presents two limi-
tations. First, as in similar works, inaccuracies of the pseudo-masks may lead to sub-optimal perfor-
mances. Second, the ASM is tailored to this specific application, as its generation for novel classes is
dependent on the segmentation masks. More recently, [120] proposed to refine the generated CAM
with attention, with the goal of generating more reliable pseudo-masks. Alternatively, other recent
methods investigated how to constrain network predictions with global statistics, for instance, the
size of the target region [53, 121, 73, 115]. This type of prior information can be imposed as equal-
ity [53] or inequality [73, 115] constraint. Although such constrained-CNN predictions achieved
outstanding performances in a few weakly-supervised learning scenarios, their applicability remains
limited to certain assumptions.

6.2.2 Bounding box supervision

Most CNN-based methods under the umbrella of bounding-box supervision fall under the category
of proposal-based methods. In these approaches, the bounding box annotations are exploited to
obtain initial pseudo-masks, or proposals, typically with a shallow segmentation method, e.g., the
very popular GrabCut method [10]. Then, training typically follows an iterative scheme, which
involves two steps, one updating the network parameters and the other adjusting the pseudo-labels
[30, 28, 29]. To further refine the pseudo-labels generated at each iteration, several works [4, 122]
used the popular DenseCRF [26] or other heuristics. While this might be very effective on some
datasets, DenseCRF typically assumes that all the training images have consistent and strong con-
trast between the foreground and background regions. Finding the optimal DenseCRF parameters1
is difficult when the contrast of the object edge varies significantly within the same dataset. More-
over, the ensuing training is not end-to-end, as it still relies on a DenseCRF post-processing, even
at inference time. Another drawback of those bounding-box based learning approaches—which is
also shared by other proposal-based methods in general—is that early mistakes will re-enforce them-

1Several hyper-parameters controls the edge sensitivity of popular DenseCRF [26], mostly θβ and θγ , but also ω1, ω2

and θα to some extent.
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(a) (b)

Figure 6.2: (a) Illustration of the tightness prior: any vertical (red) or horizontal (blue) line will
cross at least one (1) pixel of the camel. (b) This can be generalized, where segments of width w
cross at least w pixels of camel.

selves during training. For example, in DeepCut [4], while the pseudo-labels cannot grow beyond
the bounding box, the inner foreground may gradually disappear. More recently, Hsu et al [75]
employed a Multiple Instance Learning (MIL) framework to impose a tightness prior in the context
of instance segmentation of natural images. Focusing on instance segmentation, the method used
bounding boxes generated by R-CNN. In such MIL framework, positive bags are composed of box
lines while negative bags correspond to lines outside the box. The MIL loss function is defined so as
to push the maximum predicted probability within each positive bag to 1, and the maximum pre-
dicted probability within each negative bag to 0. This MIL loss is integrated with a GridCRF loss
[123] to ensure consistency between neighboring pixels. As many other works, the final predictions
are refined with DenseCRF [26].

6.3 Method

6.3.1 Preliminary notations

Let X : Ω ⊂ R2,3 → R denotes a training image, and Ω its corresponding spatial domain. In a
standard fully supervised setting, we can denote the training set as D = {(X,Y )}D, whereX ∈ RΩ

are input images and Y ∈ {0, 1}Ω their corresponding pixel-wise labels. In the context of this
work, however, labels Y take the form of bounding boxes (as shown in Figure 6.1, third column).
Thus, we use ΩO and ΩI to define the area outside and inside the bounding box, respectively, with
ΩO ∪ ΩI = Ω. Let sθ ∈ [0, 1]Ω denote the probabilities predicted by the CNNs, where 0 and 1
represent background and foreground, respectively. In fully supervised setting, one would typically
optimize the standard cross-entropy loss:

min
θ

LCE(θ) := −
∑
p∈Ω

[yp log(sθ(p)) + (1− yp) log(1− sθ(p))] .
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6.3.2 Dealing with box annotations

Certainty outside the box As shown in Figure 6.1, we certainly know that all pixels p outside
a given bounding box (ΩO ) belong to the background. A straightforward solution would be to
employ the cross-entropy, but only partially for each of those pixels outside the bounding box:

LMCE := −
∑
p∈ΩO

log(1− sθ(p)).

Alternatively, notice that the size of the predicted foreground2, when computed over the back-
ground pixels (ΩO ), should be equal to zero. This gives the following global constraint for our
optimization problem, which enforces that the background region is empty:∑

p∈ΩO

sθ(p) ≤ 0. (6.1)

We will refer to this constraint as the emptiness constraint, LEMP . LO will denote either LMCE or
LEMP.

Uncertainty inside the box While bounding box annotations provide cues about the spatial lo-
cation of the target regions, pixel-wise information still remain uncertain. However, the bounding
box can be further exploited to impose a powerful topological prior, referred to as tightness prior
[79]. This global prior assumes that the target region should be sufficiently close to each of the sides
of the bounding box. Therefore, we can expect that each horizontal or vertical line will cross at least
one pixel of the target region (as illustrated in Figure 6.2), and for any region shape. Furthermore,
we can regroup the lines into segments of width w, each containing w lines. In this case, we can
assume that at least w pixels of the object will be crossed by the segment. Formally, we can write
this as a set of inequality constraints:∑

p∈sl

yp ≥ w ∀sl ∈ SL (6.2)

where SL := {sl} is the set of segments parallel to the sides of the bounding boxes. This can be easily
translated into inequality constraints on the outputs of the CNN, where the sum of the softmax
probabilities for each segment should be greater or equal to its width. The set of segments SL can
be efficiently pre-computed; only the masked softmax sum is required during training.

6.3.3 Additional regularization: constraining the global size

The first two parts of the loss are biased toward opposed, trivial solutions: LO trivial solution is
to predict the whole image as background, while the easiest way to satisfy the tightness constraints

2Here we refer the size as the sum of the softmax probabilities, as it is easy to compute and differentiable. Therefore,
it accommodates standard Stochastic Gradient Descent.
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(6.2) is to predict everything as foreground. But there is more information that we can exploit from
the boxes: their total size gives an upper bound on the object size. We can also assume that a small
fraction ϵ of the box belongs to the target region, which yield another lower bound. This takes the
form of region-size constraint similar to [73]:

min
θ

L1(θ) + ...+ Ln(θ) (6.3)

s.t. ϵ|ΩI | ≤
∑
p∈Ω

sθ(p) ≤ |ΩI |.

6.3.4 Lagrangian optimization with log-barrier extensions

Optimizing LO with the constraints from sections 6.3.2 and 6.3.3 gives the following constrained
optimization problem:

min
θ

LO(θ) (6.4)

s.t.
∑
p∈sl

sθ(p) ≥ w ∀sl ∈ SL

ϵ|ΩI | ≤
∑
p∈Ω

sθ(p) ≤ |ΩI |.

This formulation involves a large number of competing constraints. Recent optimization works
on constrained CNNs [118] suggest that, in the case of multiple competing constraints, log-barrier
extensions provide approximations of Lagrangian optimization in the form of sequences of uncon-
strained losses, which removes completely expensive and unstable primal-dual steps in the context
of deep networks, handling the multiple constraints fully within SGD. Therefore, log-barriers can
accommodate the interplay between multiple competing constraints, unlike naive penalty-based
methods. These desirable properties are consistent with well-established interior-point and log-
barrier methods in convex optimization [21].

For an inequality constraint in the form of z ≤ 0, the log-barrier extension can be defined as
follows:

ψ̃t(z) =

{
−1

t log(−z) if z ≤ − 1
t2

tz − 1
t log(

1
t2
) + 1

t otherwise,
(6.5)

where t is a parameter that raise the barrier over time (i.e., during training). Themain differencewith
a penalty (such as max(0, z)2, used by [73]) is that (6.5) acts as a barrier even when the constraint
is satisfied (z ≤ 0), with a gradient getting more aggressive when approaching constraint-violation
boundary. This makes the trainingmore stable, and prevents already satisfied constraints from being
violated during the next training epochs. Using a penalty could oscillate, alternating between zero
and a high-penalty values [118].
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6.3.5 Final model

Using the log-barrier extension, we obtain the final unconstrained optimization problem, which
can be optimized with standard SGD:

min
θ
LO(θ) + λ

 ∑
sl∈SL

ψ̃t

(
w −

∑
p∈sl

sθ(p)

)
+ ψ̃t

ϵ|ΩI | −
∑
p∈Ω

sθ(p)

+ ψ̃t

∑
p∈Ω

sθ(p)− |ΩI |

 . (6.6)

λ is a real number balancing the tightness prior with respect to the other parts of the loss. Notice
that all log-barrier extensions ψ̃t use the same t, with a common scheduling strategy for t. This
limits the number of hyper-parameters and simplifies the model.

6.4 Experiments

6.4.1 Datasets and evaluation

We evaluate our method on two different tasks: prostate segmentation in MR-T2 and brain lesion
segmentation in MR-T1. Among these tasks, lesion segmentation is particularly challenging, due to
the heterogeneity of the lesions and high imbalance in the number of foreground and background
pixels.

Prostate segmentation on MR-T2 The first dataset that we use was made available at the MIC-
CAI 2012 prostate MR segmentation challenge3 [5]. It contains the transversal T2-weighted MR
images of 50 patients acquired at different centers, with multiple MRI vendors and different scan-
ning protocols. The images include patients with benign diseases, as well as with prostate cancer.
Images resolution ranges from 15×256×256 to 54×512×512 voxels, with a spacing ranging from
2× 0.27× 0.27 to 4× 0.75× 0.75mm3. We employed 40 patients for training and 10 for validation.

Brain lesion segmentation onMR-T1 We also evaluated the proposedmethod on the Anatomical
Tracings of LesionsAfter Stroke (ATLAS) [124], an open-source dataset of stroke lesions. It contains
229 T1-weighted MR images, coming from different cohorts and different scanners. All the images
have a resolution of 197 × 233 × 189 pixels, with a spacing of 1 × 1 × 1 mm. The annotations
were done by a team of 11 experts, who received a standardized training. We retained 26 images for
validation, while the rest were used for training.

3https://promise12.grand-challenge.org

https://promise12.grand-challenge.org
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Evaluation. To compare quantitatively the performances of the different methods, we employed
the Dice similarity coefficient, a standard performance metric in medical image segmentation. In
addition to the baseline models, we also perform comprehensive comparisons with DeepCut [4],
whose learning setting is also based on bounding box annotations.

6.4.2 Implementation details

To evaluate our method under different settings, we experimented with a differnt network archi-
tecture for each task. We employ a residual version of the well-known UNet [17] to segment the
prostate, whereas ENet [68] was a backbone architecture in the stroke lesion segmentation experi-
ments. The models were trained with ADAM [114], an initial learning rate of 5× 10−4 and a batch
size of 4 for the prostate and 32 for stroke lesions. While we employed offline data augmentation
(i.e., mirroring, flipping, rotation) to augment the PROMISE12 dataset, no augmentation was per-
formed on the ATLAS dataset. The reason for this is the low number of images on the PROMISE12
dataset compared to ATLAS.

The log-barrier parameters were set following [118], and were shared across all the log-barrier
instances. We set λ (from Eq. (6.6)) as 0.0001 for both datasets. The DenseCRF hyper-parameters
are the same as in [4], and the proposals are updated every 10 epochs for PROMISE12, and every
5 epochs for ATLAS. We empirically found that changes on the width w of the segments for the
tightness constraints did not have a significant impact on the results. Therefore, w was set to 5 in
all the experiments.

All methods are implemented in PyTorch, with the exception of the DenseCRF [26] which
uses the Python wrapper PyDenseCRF 4. To speed the proposal generation of DeepCut, the CRF
inference is parallelized using the standard Python multiprocessing module, with a careful use of
SharedArrays to avoid un-necessary and costly copies of arrays between the processes. The code is
available online5.

6.4.3 Sensitivity study on box-annotation precision

While the main experiments are performed on tight boxes (i.e., the gap between the target regions
and the bounding-box sides is not significant), we perform additional experiments where a margin
m of 10 pixels was added on each side. This enables us to evaluate the robustness of each model to
imprecise bounding-box placement. Robustness to placement is of significant importance, since per-
fect annotation of all bounding boxes might be unrealistic. Furthermore, robustness to imprecision
also alleviates the problem of annotator subjectivity.

4https://github.com/lucasb-eyer/pydensecrf
5https://github.com/LIVIAETS/boxes_tightness_prior

https://github.com/lucasb-eyer/pydensecrf
https://github.com/LIVIAETS/boxes_tightness_prior
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6.5 Results

6.5.1 Main experiment

The results of the segmentation experiments are reported in Table 6.1. We can observe that the
proposed method consistently outperforms DeepCut [4] across the two datasets. The differences in
performance range from 1% in the PROMISE12 dataset to 10% in the case of ATLAS. Furthermore,
the results obtained from the two loss functions designed to deal with the background constraints
indicate that the proposed global emptiness constraint is more effective in our setting. We hypoth-
esize this is due to several factors. First, employing the emptiness constraint on background pixels
results in all the constraint losses being on the same scale, which has very nice properties from an
optimization perspective. Second, the imbalance nature of the segmentation task in the ATLAS
dataset makes the use of the cross-entropy over all the background pixels a suboptimal alternative,
forcing solutions that encourage empty segmentations. Finally, we can observe that the proposed
method achieves performances comparable to full supervision, particularly in the task of stroke le-
sion segmentation. Using only a subset of the losses does not give optimal results, showing their
synergy.

Table 6.1: Results on the validation set for the proposed method, and the different baselines in both
PROMISE12 and ATLAS datasets. The best results in the weakly supervised setting are highlighted
in bold. NA means that the network didn’t learn to segment anything meaningful.

Method PROMISE12 ATLAS

DSC DSC

Deep cut [4] 0.827 (0.085) 0.375 (0.246)
Tightness prior

w/ emptiness constraint NA 0.161 (0.145)
Tightness prior + box size 0.620 (0.100) 0.146 (0.134)

w/ masked cross-entropy (LMCE) 0.774 (0.045) 0.159 (0.203)
w/ emptiness constraint (LEMP) 0.835 (0.032) 0.474 (0.245)

Full supervision (Cross-entropy) 0.901 (0.025) 0.489 (0.294)

Figure 6.3 depicts the validation results over training of the different models. Even though Deep-
Cut achieves similar results as the proposed approach in the PROMISE12 dataset, we can see that
it is very unstable during training, as is the case generally for proposal-based methods. Addition-
ally, its performance degrades over time. This effect is even more noticeable on the ATLAS dataset,
where it collapses to empty segmentations after 25 epochs. This behaviour is a clear example of the
instability of proposal-based methods, since we observed similar findings on the training images.
More details about this issue are provided in Appendix B.1.

Qualitative segmentation results are depicted in Fig 6.4. We can observe how the proposed
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Figure 6.3: Evolution the validation DSC values over time for both PROMISE12 and ATLAS, and
for different methods.

Table 6.2: Sensitivity study wrt. the box margins on the PROMISE12 dataset. Best results high-
lighted in bold.

Method Margin=0 Margin=10

DeepCut 0.827 (0.085) 0.684 (0.069)
Ours (emptiness constraint) 0.835 (0.032) 0.778 (0.047)

method with masked CE achieves satisfactory visual results on the prostate (first two rows), but fails
to properly segment stroke lesions (last two rows). In contrast, when background segmentations
are optimized with the proposed emptiness constraint, we observe how the segmentation results
approach full supervision performance in both datasets. This is in line with the results reported
in Table 6.1. On the other hand, DeepCut succeeds to segment the prostate but it is not able to
obtain satisfactory segmentations for brain lesions. Looking closer at these segmentations, we can
observe that they do not reliably follow the target boundaries. This can be explained by the fact
that denseCRF assumes strong contrasts between foreground and background regions, which is not
the case in many of these images. Furthermore, the results provided by denseCRF are sensitive to
its hyper-parameters θβ , θγ , ω1 and ω2, which control the edge sensitivity. Since the set of hyper-
parameters were fixed across all the images in the whole dataset, it might happen that an optimal set
of hyper-parameters for a given image performs sub-optimally for another image.

6.5.2 Resilience to box imprecision

Results of the sensitivity study on the box precision are reported in Table 6.2. While all methods
were able to reach similar performances when the bounding box annotation is nearly perfect (despite
stability issues for some methods), their performance degrades as the margin between the region of
interest and the borders of the bounding box increases. Specifically, if a margin m of 10 pixels is
added on each side, the performance of the proposed method only drops by 5%, in terms of DSC,
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Figure 6.4: Predicted segmentation on the validation set for the two tasks.

whereas DeepCut performance decreases by 14%.

Finally, the computational cost of the different methods is discussed in more details in Appendix
B.2.

6.6 Conclusion

In this paper we proposed a novel weakly-supervised learning paradigm based on several global
constraints, which are derived from bounding box annotations. First, the classical tightness prior
is integrated into a a deep learning framework by reformulating the problem as a set of constraints
on the outputs of the network. Second, a global background emptiness constraint is employed to
enforce empty segmentations outside the bounding box, which is demonstrated to bemore powerful
than standard cross-entropy for handling the background class. Integration of such a large set of
inequality constraints on deep networks represents a challenging optimization problem.
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We solve it with sequence of unconstrained losses, which are based on a recent extension of the
log-barrier method. Since this formulation accommodates standard stochastic gradient descent, it
can be easily trained on deep networks. We performed comprehensive experiments on two public
benchmarks for the challenging tasks of prostate and brain stroke lesion segmentation, and demon-
strated that the proposed approach outperforms state-of-the-art approaches with bounding-box su-
pervision. Furthermore, quantitative and qualitative results indicate that the proposed approach has
the potential to close the gap between bounding-box annotations and full supervision in semantic-
segmentation tasks.

The sensibility study showed that the proposed method is resilient to imprecision in the box
tightness. Future works will investigate the use of 3D bounding boxes as annotations, which will
make the corresponding 2D boxes looser. Such a workflow could further speed up the annotation
process. The proposed framework could also be extended to 3D-CNN, by generating segments
for the tightness prior along the three axes. Furthermore, our approach is also compatible with
multi-class segmentation problems, even when bounding boxes of different classes overlap.





Conclusion

I
n this dissertation, we addressed the problem of enforcing global inequality con-
straints during the training of deep convolutional neural networks. By using either
simple quadratic penalties or more principled log-barrier extensions, we were able to
bypass expensive and difficult primal-dual steps in standard Lagrangian optimization.

Through our papers, we demonstrated that the log-barrier extension is the best method for complex
settings, and performs significantly better than other methods in the literature. These algorithmic
developments enabled us to test various priors and constraints, improving performances in semi-
and weakly-supervised segmentation.

Our work has limitations and open problems, especially when dealing with global constraints
over 3D (or larger) image domains. For constraints that involve non-linear functions of summa-
tions over the input domains, our framework may become intractable for mini-batch training of
deep networks; it requires storing of and performing summations over all the pointwise gradients
within the input-image domain. This is often not feasible with current hardware for very big in-
puts. Methods for such images often sub-patch the image, processing only a part of it at a time. This
cannot accommodate all the global constraints that we used, such as size or centroid (Chapter 3).
Managing to enforce global constraints on very large inputs for the processing hardware is still an
open problem for future research.

Some of the most interesting constraints remain to investigate, like spatial relationships [125],
very relevant to multi-organ segmentation, where prior information about the organs position is
text-book knowledge. We did not investigate multi-class settings, which could bring interesting
constraints (For example, the myocardium encompass the left-ventricle cavity). Our work could
also trigger future investigations beyond image segmentation. Indeed, the powerful and general log-
barrier extensions fromChapter 3 can be used in other domains [2], constraining either the network
output, or regularizing the inner layers of a network.

Chapter 4 has already proved to be a useful work for the community, with many positive feed-
backs and reports of improved performances on various tasks. Yet, this boundary-loss work focused
only on the binary setting and Euclidean distance. The multi-class setting would be very interesting
to investigate, as it naturally removes the trivial solutions that exist in the binary case (i.e., empty
foreground predictions): A trivial solution for one class would be a non-suitable solution for an-
other class (and vice-versa), mitigating each other errors naturally. This is illustrated in Figure 6.5,
where preliminary results show the boundary loss alone can learn to segment a 4-class setting. Other
distance functions could be a way to use image content and edge information, potentially enabling
its use for weakly annotated images.
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Ground truth LCE LDSC LB

Figure 6.5: Results on the ACDC, a 4-classes dataset, when training with different losses. Unlike in
the binary case, here the boundary loss is able to learn to segment the object properly.
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Appendix A

Appendix for Chapter 3

A.1 Proof of Proposition 2

In this section, we provide a detailed proof for the duality-gap bound in Prop. 2. Recall our uncon-
strained approximation for inequality-constrained CNNs:

min
θ
E(θ) +

P∑
i=1

N∑
n=1

ψ̃t (fi(s
n
θ)) (A.1)

where ψ̃t is our log-barrier extension, with t strictly positive. Let θ∗ be the solution of problem
(A.1) and λ∗ ∈ RP×N the corresponding vector of implicit dual variables given by:

λ∗i,n =

{
− 1

tfi(snθ∗ )
if fi(snθ∗) ≤ − 1

t2

t otherwise
(A.2)

We assume that θ∗ verifies approximately1 the optimality condition for a minimum of (A.1):

∇E(θ∗) +

P∑
i=1

N∑
n=1

ψ̃′
t (fi(s

n
θ∗))∇fi(snθ∗) ≈ 0 (A.3)

It is easy to verify that each dual variable λ∗i,n corresponds to the derivative of the log-barrier exten-
sion at fi(Sθ∗):

λ∗i,n = ψ̃′
t (fi(s

n
θ∗))

Therefore, Eq. (A.3) means that θ∗ verifies approximately the optimality condition for the La-
grangian corresponding to the original inequality-constrained problem in Eq. (3.1) when λ = λ∗:

∇E(θ∗) +

P∑
i=1

N∑
n=1

λ∗i,n∇fi(snθ∗) ≈ 0 (A.4)

It is also easy to check that the implicit dual variables defined in (A.2) corresponds to a feasible dual,
i.e., λ∗ > 0 element-wise. Therefore, the dual function evaluated at λ∗ > 0 is:

g(λ∗) = E(θ∗) +
P∑
i=1

N∑
n=1

λ∗i,nfi(s
n
θ∗),

1When optimizing unconstrained loss via stochastic gradient descent (SGD), there is no guarantee that the obtained
solution verifies exactly the optimality conditions.
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which yields the duality gap associated with primal-dual pair (θ∗,λ∗):

E(θ∗)− g(λ∗) = −
P∑
i=1

N∑
n=1

λ∗i fi(s
n
θ∗) (A.5)

Now, to prove that this duality gap is upper-bounded by PN/t, we consider three cases for each
term in the sum in (A.5) and verify that, for all the cases, we have λ∗i,nfi(snθ∗) ≥ −1

t .

• fi(s
n
θ∗) ≤ − 1

t2
: In this case, we can verify that λ∗i,nfi(snθ∗) = −1

t using the first line of (A.2).

• − 1
t2
≤ fi(s

n
θ∗) ≤ 0: In this case, we have λ∗i,nfi(snθ∗) = tfi(s

n
θ∗) from the second line of

(A.2). As t is strictly positive and fi(snθ∗) ≥ − 1
t2
, we have tfi(snθ∗) ≥ −1

t , which means
λ∗i,nfi(s

n
θ∗) ≥ −1

t .

• fi(s
n
θ∗) ≥ 0: In this case, λ∗i,nfi(snθ∗) = tfi(s

n
θ∗) ≥ 0 > −1

t because t is strictly positive.

In all the three cases, we have λ∗i,nfi(snθ∗) ≥ −1
t . Summing this inequality over i gives:

−
P∑
i=1

N∑
n=1

λ∗i,nfi(s
n
θ∗) ≤ PN

t
.

Using this inequality in (A.5) yields the following upper bound on the duality gap associated with
primal θ∗ and implicit dual feasible λ∗ for the original inequality-constrained problem:

E(θ∗)− g(λ∗) ≤ PN/t

This bound yields sub-optimality certificates for feasible solutions of our approximation in
(A.1). If the solution θ∗ that we obtain from our unconstrained problem (A.1) is feasible, i.e.,
it satisfies constraints fi(snθ∗) ≤ 0, ∀i, ∀n, then θ∗ is PN/t-suboptimal for the original inequality
constrained problem: E(θ∗) − E∗ ≤ PN/t. Our upper-bound result can be viewed as a general-
ization of the duality-gap equality for the standard log-barrier function [21]. Our result applies
to the general context of convex optimization. In deep CNNs, of course, a feasible solution for
our approximation may not be unique and is not guaranteed to be a global optimum as E and the
constraints are not convex.

A.2 Qualitative results on PROMISE12

Examples of the labels used are shown in Figure A.1, and qualitative comparisons between methods
are available in Figures A.1.
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Figure A.1: Full mask of the prostate ( left) and the generated point and box annotations (middle and
right) on PROMISE12. The background is depicted in red and the foreground in green. No color
means that no information is provided about the pixel class. The figures are best viewed in colors.

A.3 Analysis of the dual step for the ReLU Lagrangian

As pointed out by [2], when imposing P different constraints on each data point, we end-up with
a dual variable λ ∈ RP×N . The authors of [2] mentioned that this could be an issue for scalability.
Here, we argue that, from a computational perspective, this is not a very significant issue.

Assuming 2 different constrained functions per datapoint, each with a lower and upper bound,
we have 4 float value to store per data point. If each value is represented as a float32 (which is
very reasonable, as the extra precision of a float64 is rarely used in Deep Learning), this yields a
total of 128 bits per datapoint, or 16 bytes. This gives 16MB to store per million datapoint, which
is within the reach of modern computers. While it is true that fetching the current λi,n for each n
adds some complexity in the code, it only adds a constant and a negligible cost with respect to N .

However, regrouping λi,n ∀n into a single λi (so that λ ∈ RP ) introduces the following, poten-
tially undesirable property during the λ udpates:

∇λi =
∑
n

max(0, fi(s
n
θ)) ≥ max

n
max(0, fi(s

n
θ))

=⇒
∃m ∈ D : fi(s

m
θ ) > 0⇒ λt+1

i > λti

In other words, if a single data point has an unsatisfied constraint, λi will keep increasing for the
whole dataset. This may make the balancing of competing constraints very difficult, as shown by
our experiments (especially on PROMISE12 with Setting I). λ kept increasing until reaching very
high values, making constraint balancing difficult to reach.
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Figure A.2: Results on the PROMISE12 dataset. Images are cropped for visualization purposes. The
background is depicted in red, and foreground in green. The figures are best viewed in colors.
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A.4 Lagrangian with proposals: process and equations

The method of [3] optimize Equation (3.5). For a sample n2:

Ln(ỹ,λ,ν) = KL(ỹn||snθ) +
P∑
i=1

λni (ỹ
n⊤ai − bi) +

∑
p∈Ω

νnp (1
⊤ỹnp − 1), (A.6)

Updating ỹ

Optimizing (A.6) w.r.t. ỹ is convex ; strong duality holds if a feasible points exist. In this case, the
solution of the primal problem (A.6) is the same as the dual problem:

min
ỹ

max
λ≥0,ν

Ln(ỹn,λ,ν) = max
λ≥0,ν

min
ỹn
Ln(ỹ,λ,ν) (A.7)

Therefore, the global optimum can be obtained by setting the derivative equal to 0. Notice that
Ln is separable over variable ỹnp . In fact, we can write Ln (up to a constant) in the form of sum of
independent functions, each corresponding to one pixel p ∈ Ω:

−ỹn⊤p log snp,θ + ỹn⊤p log ỹnp +
∑
i

λi,n(ỹ
n⊤
p ai) + νp,n1

⊤ỹp. (A.8)

Setting the derivative w.r.t. ỹnp equal to zero gives:

− log snp,θ + log ỹnp +
∑
i

λi,nai + (νp,n + 1)1 = 0 (A.9)

This yields the following closed-form solution:

ỹn∗k,p = e−
∑

i λi,nai,k+log snk,p,θe−νp,n−1

ỹn∗k,p = snk,p,θe
−

∑
i λi,nai,ke−νp,n−1, (A.10)

where k represent the class number.

Computing the dual function

We want to maximize the dual function, which is given by

gn(λ,ν) = min
ỹn
Ln(ỹn,λ,ν) = Ln(ỹn∗,λ,ν).

2Each Ln is independent, and this makes the notation easier to read.
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The dual function is concave w.r.t. dual variables λ,ν (minimum of linear functions). Maximizing
gn w.r.t. ν can be done in closed-form by setting the derivative of gn(λ,ν) w.r.t. each νp,n equal
to zero, which yields simplex constraints 1⊤ỹnp − 1 = 0 ∀p. Plugging (A.10) into the simplex
constraint yields the following closed-form optimality condition over each νp:

1⊤ỹn∗p − 1 = 0

⇔
∑
k

ỹn∗k,p = 1

⇔ e−νi,n−1 =
1∑

k s
n
k,p,θe

−
∑

i λi,nai,k
(A.11)

Plugging back into (A.10) yields the following solution:

ỹn∗k,p =
snk,p,θe

−
∑

i λi,nai,k∑
k′ s

n
k′,p,θe

−
∑

i λi,nai,k′
(A.12)

Now the dual function depends only on λ: gn(λ) = Ln(ỹn∗,λ).
Now, again, the dual function is concave w.r.t. λ and, therefore, can be optimized globally with

projected gradient ascent. The gradient of the dual function w.r.t. to λ is

∇Lnλ =
∂Ln(ỹn∗,λ)

∂λ
= ỹn∗⊤ai − bi

Projected gradient ascent

To solvemaxλ⪰0Ln(ỹn∗,λ), we use a projected gradient ascent ; we simply choose the point nearest
to λt +∇Lnλ(ỹn∗,λ) in the set {λ � 0}. This gives the following updates:

λt+1 =

{
λt +∇Lnλ(ỹn∗,λt) if ∇Lnλ(ỹn∗,λ) � 0
0 otherwise (A.13)

The overall algorithm is summarized in Algorithm 4.
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Algorithm 4 Overview of [3] method.
Input:
Init λ to 0
Init ỹn with the image level label

Output:
Network parameters θ

while ỹn not converged do
function Update θ( ỹn)

θt = argminθ LCross-entropy(ỹn, snθ)) ▷With stochastic gradient descent
end function
function Update λ(snθ )

while Not converged do
Solve ỹn∗ analytically with Equation (A.12)
Update λ with projected gradient descent in Equation (A.13)

end while
ỹn = ỹn∗

end function
end while
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Appendix for Chapter 6

B.1 DeepCut training instability

We investigated the generated pseudo-labels (as showed in Figure B.1) by DeepCut, and the main
culprit is when the proposal under-segment the object inside the box. This forces, at the next train-
ing step, the network to segment the object as background. This kind of conflicting feedback to
the network (some other proposal label similar looking patches as foreground) makes the training
unstable, and slowly skew the network toward empty predictions. This will cause the next batch of
proposals to be even smaller, until the network outputs empty foreground for all the images.

Figure B.1: Progression of the pseudo-labels from DeepCut: only a few of those cases can make the
training very unstable.

B.2 Implementation and performances

Performances were measured on a machine equipped with an AMD Ryzen 1700X, 32GB of RAM
(frequency did not affect speed) and an NVIDIA Titan RTX. They are reported in Table B.1. The
settings and hyper-parameters are the same as described in Section 6.4.2.

Most of the extra time introduced by our model comes from the naive log-barrier implementa-
tion that we used. Instead of leveraging if/else switch and code vectorization we used a standard
Python for loop over all constraints. This could be improved using the recent PyTorch develop-
ment of its JIT compiler. The width parameter of the segments will affect the overhead of our
method: wider segments means less of them, which, in turns, results in less constraints to handle.

Notice that implementing theDenseCRF post-processing in a parallel and efficient fashion intro-
duces a lot of software engineering uncommon in modern learning frameworks. While the Dense-
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CRF implementation itself is highly efficient, it remains a single process that can handle only one
image at a time. Performing it in parallel should be easy in theory, but is actually not very efficient
with Python standard multiprocessing tools. In practice, all the arrays (containing either the image
or probabilities) are pickled and copied across processes. Those back-and-forth copies can add up
quickly and slow-down the processing substantially, on top of filling the computer memory more
quickly. The solution is to carefully use SharedArray1, which will contain all the batch in a single
object. The sub-processed will read and write only a subset of those SharedArrays, corresponding
to their assigned batch item.

Table B.1: Comparison in training speed between the different methods on the two datasets,
PROMISE12 (Pr) and ATLAS (At).

Time per epoch (s) Proposals update (s) Total (h)

Method Pr At Pr At Pr At
Full supervision 150 235 - - 4.2 3.3
Ours 170 325 - - 4.7 4.5
DeepCut 150 235 440 3120 6.6 11.9

1Carefully, because they are not concurrency safe.
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